Source code for tests.system.providers.yandex.example_yandexcloud_dataproc

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import os
import uuid
from datetime import datetime

from airflow import DAG
from airflow.providers.yandex.operators.yandexcloud_dataproc import (
    DataprocCreateClusterOperator,
    DataprocCreateHiveJobOperator,
    DataprocCreateMapReduceJobOperator,
    DataprocCreatePysparkJobOperator,
    DataprocCreateSparkJobOperator,
    DataprocDeleteClusterOperator,
)

# Name of the datacenter where Dataproc cluster will be created
from airflow.utils.trigger_rule import TriggerRule

# should be filled with appropriate ids


[docs]AVAILABILITY_ZONE_ID = 'ru-central1-c'
# Dataproc cluster jobs will produce logs in specified s3 bucket
[docs]S3_BUCKET_NAME_FOR_JOB_LOGS = ''
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = 'example_yandexcloud_dataproc_operator'
with DAG( DAG_ID, schedule=None, start_date=datetime(2021, 1, 1), tags=['example'], ) as dag:
[docs] create_cluster = DataprocCreateClusterOperator( task_id='create_cluster', zone=AVAILABILITY_ZONE_ID, s3_bucket=S3_BUCKET_NAME_FOR_JOB_LOGS, computenode_count=1, computenode_max_hosts_count=5,
) create_hive_query = DataprocCreateHiveJobOperator( task_id='create_hive_query', query='SELECT 1;', ) create_hive_query_from_file = DataprocCreateHiveJobOperator( task_id='create_hive_query_from_file', query_file_uri='s3a://data-proc-public/jobs/sources/hive-001/main.sql', script_variables={ 'CITIES_URI': 's3a://data-proc-public/jobs/sources/hive-001/cities/', 'COUNTRY_CODE': 'RU', }, ) create_mapreduce_job = DataprocCreateMapReduceJobOperator( task_id='create_mapreduce_job', main_class='org.apache.hadoop.streaming.HadoopStreaming', file_uris=[ 's3a://data-proc-public/jobs/sources/mapreduce-001/mapper.py', 's3a://data-proc-public/jobs/sources/mapreduce-001/reducer.py', ], args=[ '-mapper', 'mapper.py', '-reducer', 'reducer.py', '-numReduceTasks', '1', '-input', 's3a://data-proc-public/jobs/sources/data/cities500.txt.bz2', '-output', f's3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/{uuid.uuid4()}', ], properties={ 'yarn.app.mapreduce.am.resource.mb': '2048', 'yarn.app.mapreduce.am.command-opts': '-Xmx2048m', 'mapreduce.job.maps': '6', }, ) create_spark_job = DataprocCreateSparkJobOperator( task_id='create_spark_job', main_jar_file_uri='s3a://data-proc-public/jobs/sources/java/dataproc-examples-1.0.jar', main_class='ru.yandex.cloud.dataproc.examples.PopulationSparkJob', file_uris=[ 's3a://data-proc-public/jobs/sources/data/config.json', ], archive_uris=[ 's3a://data-proc-public/jobs/sources/data/country-codes.csv.zip', ], jar_file_uris=[ 's3a://data-proc-public/jobs/sources/java/icu4j-61.1.jar', 's3a://data-proc-public/jobs/sources/java/commons-lang-2.6.jar', 's3a://data-proc-public/jobs/sources/java/opencsv-4.1.jar', 's3a://data-proc-public/jobs/sources/java/json-20190722.jar', ], args=[ 's3a://data-proc-public/jobs/sources/data/cities500.txt.bz2', f's3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/${{JOB_ID}}', ], properties={ 'spark.submit.deployMode': 'cluster', }, packages=['org.slf4j:slf4j-simple:1.7.30'], repositories=['https://repo1.maven.org/maven2'], exclude_packages=['com.amazonaws:amazon-kinesis-client'], ) create_pyspark_job = DataprocCreatePysparkJobOperator( task_id='create_pyspark_job', main_python_file_uri='s3a://data-proc-public/jobs/sources/pyspark-001/main.py', python_file_uris=[ 's3a://data-proc-public/jobs/sources/pyspark-001/geonames.py', ], file_uris=[ 's3a://data-proc-public/jobs/sources/data/config.json', ], archive_uris=[ 's3a://data-proc-public/jobs/sources/data/country-codes.csv.zip', ], args=[ 's3a://data-proc-public/jobs/sources/data/cities500.txt.bz2', f's3a://{S3_BUCKET_NAME_FOR_JOB_LOGS}/dataproc/job/results/${{JOB_ID}}', ], jar_file_uris=[ 's3a://data-proc-public/jobs/sources/java/dataproc-examples-1.0.jar', 's3a://data-proc-public/jobs/sources/java/icu4j-61.1.jar', 's3a://data-proc-public/jobs/sources/java/commons-lang-2.6.jar', ], properties={ 'spark.submit.deployMode': 'cluster', }, packages=['org.slf4j:slf4j-simple:1.7.30'], repositories=['https://repo1.maven.org/maven2'], exclude_packages=['com.amazonaws:amazon-kinesis-client'], ) delete_cluster = DataprocDeleteClusterOperator( task_id='delete_cluster', trigger_rule=TriggerRule.ALL_DONE ) create_cluster >> create_mapreduce_job >> create_hive_query >> create_hive_query_from_file create_hive_query_from_file >> create_spark_job >> create_pyspark_job >> delete_cluster from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?