Source code for tests.system.providers.weaviate.example_weaviate_dynamic_mapping_dag

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import pendulum

from airflow.decorators import dag, setup, task, teardown
from airflow.providers.weaviate.operators.weaviate import WeaviateIngestOperator


@dag(
    schedule=None,
    start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
    catchup=False,
    tags=["example", "weaviate"],
)
[docs]def example_weaviate_dynamic_mapping_dag(): """ Example DAG which uses WeaviateIngestOperator to insert embeddings to Weaviate using dynamic mapping""" @setup @task def create_weaviate_class(data): """ Example task to create class without any Vectorizer. You're expected to provide custom vectors for your data. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. class_obj = { "class": data[0], "vectorizer": data[1], } weaviate_hook.create_class(class_obj) @setup @task def get_data_to_ingest(): import json from pathlib import Path file1 = json.load(Path("jeopardy_data_with_vectors.json").open()) file2 = json.load(Path("jeopardy_data_without_vectors.json").open()) return [file1, file2] get_data_to_ingest = get_data_to_ingest() perform_ingestion = WeaviateIngestOperator.partial( task_id="perform_ingestion", conn_id="weaviate_default", ).expand( class_name=["example1", "example2"], input_data=get_data_to_ingest["return_value"], ) @teardown @task def delete_weaviate_class(class_name): """ Example task to delete a weaviate class """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_classes([class_name]) ( create_weaviate_class.expand(data=[["example1", "none"], ["example2", "text2vec-openai"]]) >> perform_ingestion >> delete_weaviate_class.expand(class_name=["example1", "example2"]) )
example_weaviate_dynamic_mapping_dag() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?