Source code for tests.system.providers.weaviate.example_weaviate_using_hook
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import pendulum
from airflow.decorators import dag, task, teardown
@dag(
    schedule=None,
    start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
    catchup=False,
    tags=["example", "weaviate"],
)
[docs]def example_weaviate_dag_using_hook():
    """Example Weaviate DAG demonstrating usage of the hook."""
    @task()
    def create_class_with_vectorizer():
        """
        Example task to create class with OpenAI Vectorizer responsible for vectorining data using Weaviate cluster.
        """
        from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
        weaviate_hook = WeaviateHook()
        class_obj = {
            "class": "QuestionWithOpenAIVectorizerUsingHook",
            "description": "Information from a Jeopardy! question",  # description of the class
            "properties": [
                {
                    "dataType": ["text"],
                    "description": "The question",
                    "name": "question",
                },
                {
                    "dataType": ["text"],
                    "description": "The answer",
                    "name": "answer",
                },
                {
                    "dataType": ["text"],
                    "description": "The category",
                    "name": "category",
                },
            ],
            "vectorizer": "text2vec-openai",
        }
        weaviate_hook.create_class(class_obj)
    @task()
    def create_class_without_vectorizer():
        """
        Example task to create class without any Vectorizer. You're expected to provide custom vectors for your data.
        """
        from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
        weaviate_hook = WeaviateHook()
        # Class definition object. Weaviate's autoschema feature will infer properties when importing.
        class_obj = {
            "class": "QuestionWithoutVectorizerUsingHook",
            "vectorizer": "none",
        }
        weaviate_hook.create_class(class_obj)
    @task(trigger_rule="all_done")
    def store_data_without_vectors_in_xcom():
        import json
        from pathlib import Path
        data = json.load(Path("jeopardy_data_without_vectors.json").open())
        return data
    @task(trigger_rule="all_done")
    def store_data_with_vectors_in_xcom():
        import json
        from pathlib import Path
        data = json.load(Path("jeopardy_data_with_vectors.json").open())
        return data
    @task(trigger_rule="all_done")
    def batch_data_without_vectors(data: list):
        from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
        weaviate_hook = WeaviateHook()
        weaviate_hook.batch_data("QuestionWithOpenAIVectorizerUsingHook", data)
    @task(trigger_rule="all_done")
    def batch_data_with_vectors(data: list):
        from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
        weaviate_hook = WeaviateHook()
        weaviate_hook.batch_data("QuestionWithoutVectorizerUsingHook", data)
    @teardown
    @task
    def delete_weaviate_class_Vector():
        """
        Example task to delete a weaviate class
        """
        from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
        weaviate_hook = WeaviateHook()
        # Class definition object. Weaviate's autoschema feature will infer properties when importing.
        weaviate_hook.delete_classes(["QuestionWithOpenAIVectorizerUsingHook"])
    @teardown
    @task
    def delete_weaviate_class_without_Vector():
        """
        Example task to delete a weaviate class
        """
        from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
        weaviate_hook = WeaviateHook()
        # Class definition object. Weaviate's autoschema feature will infer properties when importing.
        weaviate_hook.delete_classes(["QuestionWithoutVectorizerUsingHook"])
    data_with_vectors = store_data_with_vectors_in_xcom()
    (
        create_class_without_vectorizer()
        >> batch_data_with_vectors(data_with_vectors["return_value"])
        >> delete_weaviate_class_Vector()
    )
    data_without_vectors = store_data_without_vectors_in_xcom()
    (
        create_class_with_vectorizer()
        >> batch_data_without_vectors(data_without_vectors["return_value"])
        >> delete_weaviate_class_without_Vector()
    ) 
example_weaviate_dag_using_hook()
from tests.system.utils import get_test_run  # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)