Source code for tests.system.providers.weaviate.example_weaviate_using_hook

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import pendulum

from airflow.decorators import dag, task, teardown


@dag(
    schedule=None,
    start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
    catchup=False,
    tags=["example", "weaviate"],
)
[docs]def example_weaviate_dag_using_hook(): """Example Weaviate DAG demonstrating usage of the hook.""" @task() def create_class_with_vectorizer(): """ Example task to create class with OpenAI Vectorizer responsible for vectorining data using Weaviate cluster. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() class_obj = { "class": "QuestionWithOpenAIVectorizerUsingHook", "description": "Information from a Jeopardy! question", # description of the class "properties": [ { "dataType": ["text"], "description": "The question", "name": "question", }, { "dataType": ["text"], "description": "The answer", "name": "answer", }, { "dataType": ["text"], "description": "The category", "name": "category", }, ], "vectorizer": "text2vec-openai", } weaviate_hook.create_class(class_obj) @task() def create_class_without_vectorizer(): """ Example task to create class without any Vectorizer. You're expected to provide custom vectors for your data. """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. class_obj = { "class": "QuestionWithoutVectorizerUsingHook", "vectorizer": "none", } weaviate_hook.create_class(class_obj) @task(trigger_rule="all_done") def store_data_without_vectors_in_xcom(): import json from pathlib import Path data = json.load(Path("jeopardy_data_without_vectors.json").open()) return data @task(trigger_rule="all_done") def store_data_with_vectors_in_xcom(): import json from pathlib import Path data = json.load(Path("jeopardy_data_with_vectors.json").open()) return data @task(trigger_rule="all_done") def batch_data_without_vectors(data: list): from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() weaviate_hook.batch_data("QuestionWithOpenAIVectorizerUsingHook", data) @task(trigger_rule="all_done") def batch_data_with_vectors(data: list): from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() weaviate_hook.batch_data("QuestionWithoutVectorizerUsingHook", data) @teardown @task def delete_weaviate_class_Vector(): """ Example task to delete a weaviate class """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_classes(["QuestionWithOpenAIVectorizerUsingHook"]) @teardown @task def delete_weaviate_class_without_Vector(): """ Example task to delete a weaviate class """ from airflow.providers.weaviate.hooks.weaviate import WeaviateHook weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_classes(["QuestionWithoutVectorizerUsingHook"]) data_with_vectors = store_data_with_vectors_in_xcom() ( create_class_without_vectorizer() >> batch_data_with_vectors(data_with_vectors["return_value"]) >> delete_weaviate_class_Vector() ) data_without_vectors = store_data_without_vectors_in_xcom() ( create_class_with_vectorizer() >> batch_data_without_vectors(data_without_vectors["return_value"]) >> delete_weaviate_class_without_Vector() )
example_weaviate_dag_using_hook() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?