Source code for tests.system.providers.weaviate.example_weaviate_using_hook
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import pendulum
from airflow.decorators import dag, task, teardown
@dag(
schedule=None,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
catchup=False,
tags=["example", "weaviate"],
)
[docs]def example_weaviate_dag_using_hook():
"""Example Weaviate DAG demonstrating usage of the hook."""
@task()
def create_class_with_vectorizer():
"""
Example task to create class with OpenAI Vectorizer responsible for vectorining data using Weaviate cluster.
"""
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
weaviate_hook = WeaviateHook()
class_obj = {
"class": "QuestionWithOpenAIVectorizerUsingHook",
"description": "Information from a Jeopardy! question", # description of the class
"properties": [
{
"dataType": ["text"],
"description": "The question",
"name": "question",
},
{
"dataType": ["text"],
"description": "The answer",
"name": "answer",
},
{
"dataType": ["text"],
"description": "The category",
"name": "category",
},
],
"vectorizer": "text2vec-openai",
}
weaviate_hook.create_class(class_obj)
@task()
def create_class_without_vectorizer():
"""
Example task to create class without any Vectorizer. You're expected to provide custom vectors for your data.
"""
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
weaviate_hook = WeaviateHook()
# Class definition object. Weaviate's autoschema feature will infer properties when importing.
class_obj = {
"class": "QuestionWithoutVectorizerUsingHook",
"vectorizer": "none",
}
weaviate_hook.create_class(class_obj)
@task(trigger_rule="all_done")
def store_data_without_vectors_in_xcom():
import json
from pathlib import Path
data = json.load(Path("jeopardy_data_without_vectors.json").open())
return data
@task(trigger_rule="all_done")
def store_data_with_vectors_in_xcom():
import json
from pathlib import Path
data = json.load(Path("jeopardy_data_with_vectors.json").open())
return data
@task(trigger_rule="all_done")
def batch_data_without_vectors(data: list):
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
weaviate_hook = WeaviateHook()
weaviate_hook.batch_data("QuestionWithOpenAIVectorizerUsingHook", data)
@task(trigger_rule="all_done")
def batch_data_with_vectors(data: list):
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
weaviate_hook = WeaviateHook()
weaviate_hook.batch_data("QuestionWithoutVectorizerUsingHook", data)
@teardown
@task
def delete_weaviate_class_Vector():
"""
Example task to delete a weaviate class
"""
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
weaviate_hook = WeaviateHook()
# Class definition object. Weaviate's autoschema feature will infer properties when importing.
weaviate_hook.delete_classes(["QuestionWithOpenAIVectorizerUsingHook"])
@teardown
@task
def delete_weaviate_class_without_Vector():
"""
Example task to delete a weaviate class
"""
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
weaviate_hook = WeaviateHook()
# Class definition object. Weaviate's autoschema feature will infer properties when importing.
weaviate_hook.delete_classes(["QuestionWithoutVectorizerUsingHook"])
data_with_vectors = store_data_with_vectors_in_xcom()
(
create_class_without_vectorizer()
>> batch_data_with_vectors(data_with_vectors["return_value"])
>> delete_weaviate_class_Vector()
)
data_without_vectors = store_data_without_vectors_in_xcom()
(
create_class_with_vectorizer()
>> batch_data_without_vectors(data_without_vectors["return_value"])
>> delete_weaviate_class_without_Vector()
)
example_weaviate_dag_using_hook()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)