Source code for tests.system.providers.weaviate.example_weaviate_operator

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import pendulum

from airflow.decorators import dag, task, teardown
from airflow.providers.weaviate.hooks.weaviate import WeaviateHook
from airflow.providers.weaviate.operators.weaviate import WeaviateIngestOperator

[docs]sample_data_with_vector = [ { "Answer": "Liver", "Category": "SCIENCE", "Question": "This organ removes excess glucose from the blood & stores it as glycogen", "Vector": [ -0.006632288, -0.0042016874, 0.030541966, ], }, { "Answer": "Elephant", "Category": "ANIMALS", "Question": "It's the only living mammal in the order Proboseidea", "Vector": [ -0.0166891, -0.00092290324, -0.0125168245, ], }, { "Answer": "the nose or snout", "Category": "ANIMALS", "Question": "The gavial looks very much like a crocodile except for this bodily feature", "Vector": [ -0.015592773, 0.019883318, 0.017782344, ], }, ]
[docs]sample_data_without_vector = [ { "Answer": "Liver", "Category": "SCIENCE", "Question": "This organ removes excess glucose from the blood & stores it as glycogen", }, { "Answer": "Elephant", "Category": "ANIMALS", "Question": "It's the only living mammal in the order Proboseidea", }, { "Answer": "the nose or snout", "Category": "ANIMALS", "Question": "The gavial looks very much like a crocodile except for this bodily feature", }, ]
[docs]def get_data_with_vectors(*args, **kwargs): return sample_data_with_vector
[docs]def get_data_without_vectors(*args, **kwargs): return sample_data_without_vector
@dag( schedule=None, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), catchup=False, tags=["example", "weaviate"], )
[docs]def example_weaviate_using_operator(): """ Example Weaviate DAG demonstrating usage of the operator. """ # Example tasks to create a Weaviate class without vectorizers, store data with custom vectors in XCOM, # and call WeaviateIngestOperator to ingest data with those custom vectors. There are 2 tasks for # WeaviateIngestOperator, one of them gets input data from the XCOM and the other gets input data # from a callable. @task() def create_class_without_vectorizer(): """ Example task to create class without any Vectorizer. You're expected to provide custom vectors for your data. """ weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. class_obj = { "class": "QuestionWithoutVectorizerUsingOperator", "vectorizer": "none", } weaviate_hook.create_class(class_obj) @task(trigger_rule="all_done") def store_data_with_vectors_in_xcom(): return sample_data_with_vector # [START howto_operator_weaviate_embedding_and_ingest_xcom_data_with_vectors] batch_data_with_vectors_xcom_data = WeaviateIngestOperator( task_id="batch_data_with_vectors_xcom_data", conn_id="weaviate_default", class_name="QuestionWithoutVectorizerUsingOperator", input_json=store_data_with_vectors_in_xcom(), trigger_rule="all_done", ) # [END howto_operator_weaviate_embedding_and_ingest_xcom_data_with_vectors] # [START howto_operator_weaviate_embedding_and_ingest_callable_data_with_vectors] batch_data_with_vectors_callable_data = WeaviateIngestOperator( task_id="batch_data_with_vectors_callable_data", conn_id="weaviate_default", class_name="QuestionWithoutVectorizerUsingOperator", input_json=get_data_with_vectors(), trigger_rule="all_done", ) # [END howto_operator_weaviate_embedding_and_ingest_callable_data_with_vectors] # Example tasks to create class with OpenAI vectorizer, store data without vectors in XCOM, and call # WeaviateIngestOperator to ingest data by internally generating OpenAI vectors while ingesting. # There are 2 tasks for WeaviateIngestOperator, one of them gets input data from the XCOM and the other # gets input data from a callable. @task() def create_class_with_vectorizer(): """ Example task to create class with OpenAI Vectorizer responsible for vectorining data using Weaviate cluster. """ weaviate_hook = WeaviateHook() class_obj = { "class": "QuestionWithOpenAIVectorizerUsingOperator", "description": "Information from a Jeopardy! question", # description of the class "properties": [ { "dataType": ["text"], "description": "The question", "name": "question", }, { "dataType": ["text"], "description": "The answer", "name": "answer", }, { "dataType": ["text"], "description": "The category", "name": "category", }, ], "vectorizer": "text2vec-openai", } weaviate_hook.create_class(class_obj) @task(trigger_rule="all_done") def store_data_without_vectors_in_xcom(): return sample_data_without_vector # [START howto_operator_weaviate_ingest_xcom_data_without_vectors] batch_data_without_vectors_xcom_data = WeaviateIngestOperator( task_id="batch_data_without_vectors_xcom_data", conn_id="weaviate_default", class_name="QuestionWithOpenAIVectorizerUsingOperator", input_json=store_data_without_vectors_in_xcom(), trigger_rule="all_done", ) # [END howto_operator_weaviate_ingest_xcom_data_without_vectors] # [START howto_operator_weaviate_ingest_callable_data_without_vectors] batch_data_without_vectors_callable_data = WeaviateIngestOperator( task_id="batch_data_without_vectors_callable_data", conn_id="weaviate_default", class_name="QuestionWithOpenAIVectorizerUsingOperator", input_json=get_data_without_vectors(), trigger_rule="all_done", ) # [END howto_operator_weaviate_ingest_callable_data_without_vectors] @teardown @task def delete_weaviate_class_Vector(): """ Example task to delete a weaviate class """ weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_class("QuestionWithOpenAIVectorizerUsingOperator") @teardown @task def delete_weaviate_class_without_Vector(): """ Example task to delete a weaviate class """ weaviate_hook = WeaviateHook() # Class definition object. Weaviate's autoschema feature will infer properties when importing. weaviate_hook.delete_class("QuestionWithoutVectorizerUsingOperator") ( create_class_without_vectorizer() >> [ batch_data_with_vectors_xcom_data, batch_data_with_vectors_callable_data, ] >> delete_weaviate_class_without_Vector() ) ( create_class_with_vectorizer() >> [ batch_data_without_vectors_xcom_data, batch_data_without_vectors_callable_data, ] >> delete_weaviate_class_Vector() )
example_weaviate_using_operator() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?