Source code for tests.system.providers.qubole.example_qubole

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import filecmp
import os
import random
import textwrap
from datetime import datetime

from airflow import DAG
from airflow.decorators import task

try:
    from airflow.operators.empty import EmptyOperator
except ModuleNotFoundError:
    from airflow.operators.dummy import DummyOperator as EmptyOperator  # type: ignore

from airflow.operators.python import BranchPythonOperator
from airflow.providers.qubole.operators.qubole import QuboleOperator
from airflow.utils.trigger_rule import TriggerRule

[docs]START_DATE = datetime(2021, 1, 1)
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "example_qubole_operator"
with DAG( dag_id=DAG_ID, schedule=None, start_date=START_DATE, tags=["example"], ) as dag: dag.doc_md = textwrap.dedent( """ This is only an example DAG to highlight usage of QuboleOperator in various scenarios, some of these tasks may or may not work based on your Qubole account setup. Run a shell command from Qubole Analyze against your Airflow cluster with following to trigger it manually `airflow dags trigger example_qubole_operator`. *Note: Make sure that connection `qubole_default` is properly set before running this example. Also be aware that it might spin up clusters to run these examples.* """ ) @task(trigger_rule=TriggerRule.ALL_DONE)
[docs] def compare_result(hive_show_table, hive_s3_location, ti=None) -> bool: """ Compares the results of two QuboleOperator tasks. :param hive_show_table: The "hive_show_table" task. :param hive_s3_location: The "hive_s3_location" task. :param ti: The TaskInstance object. :return: True if the files are the same, False otherwise. """ qubole_result_1 = hive_show_table.get_results(ti) qubole_result_2 = hive_s3_location.get_results(ti) return filecmp.cmp(qubole_result_1, qubole_result_2)
# [START howto_operator_qubole_run_hive_query] hive_show_table = QuboleOperator( task_id="hive_show_table", command_type="hivecmd", query="show tables", cluster_label="{{ params.cluster_label }}", fetch_logs=True, # If `fetch_logs`=true, will fetch qubole command logs and concatenate # them into corresponding airflow task logs tags="airflow_example_run", # To attach tags to qubole command, auto attach 3 tags - dag_id, task_id, run_id params={ "cluster_label": "default", }, ) # [END howto_operator_qubole_run_hive_query] # [START howto_operator_qubole_run_hive_script] hive_s3_location = QuboleOperator( task_id="hive_s3_location", command_type="hivecmd", script_location="s3n://public-qubole/qbol-library/scripts/show_table.hql", notify=True, tags=["tag1", "tag2"], # If the script at s3 location has any qubole specific macros to be replaced # macros='[{"date": "{{ ds }}"}, {"name" : "abc"}]', ) # [END howto_operator_qubole_run_hive_script] options = ["hadoop_jar_cmd", "presto_cmd", "db_query", "spark_cmd"] branching = BranchPythonOperator(task_id="branching", python_callable=lambda: random.choice(options)) [hive_show_table, hive_s3_location] >> compare_result(hive_s3_location, hive_show_table) >> branching join = EmptyOperator(task_id="join", trigger_rule=TriggerRule.ONE_SUCCESS) # [START howto_operator_qubole_run_hadoop_jar] hadoop_jar_cmd = QuboleOperator( task_id="hadoop_jar_cmd", command_type="hadoopcmd", sub_command="jar s3://paid-qubole/HadoopAPIExamples/" "jars/hadoop-0.20.1-dev-streaming.jar " "-mapper wc " "-numReduceTasks 0 -input s3://paid-qubole/HadoopAPITests/" "data/3.tsv -output " "s3://paid-qubole/HadoopAPITests/data/3_wc", cluster_label="{{ params.cluster_label }}", fetch_logs=True, params={ "cluster_label": "default", }, ) # [END howto_operator_qubole_run_hadoop_jar] # [START howto_operator_qubole_run_pig_script] pig_cmd = QuboleOperator( task_id="pig_cmd", command_type="pigcmd", script_location="s3://public-qubole/qbol-library/scripts/script1-hadoop-s3-small.pig", parameters="key1=value1 key2=value2", ) # [END howto_operator_qubole_run_pig_script] branching >> hadoop_jar_cmd >> pig_cmd >> join # [START howto_operator_qubole_run_presto_query] presto_cmd = QuboleOperator(task_id="presto_cmd", command_type="prestocmd", query="show tables") # [END howto_operator_qubole_run_presto_query] # [START howto_operator_qubole_run_shell_script] shell_cmd = QuboleOperator( task_id="shell_cmd", command_type="shellcmd", script_location="s3://public-qubole/qbol-library/scripts/shellx.sh", parameters="param1 param2", ) # [END howto_operator_qubole_run_shell_script] branching >> presto_cmd >> shell_cmd >> join # [START howto_operator_qubole_run_db_tap_query] db_query = QuboleOperator( task_id="db_query", command_type="dbtapquerycmd", query="show tables", db_tap_id=2064 ) # [END howto_operator_qubole_run_db_tap_query] # [START howto_operator_qubole_run_db_export] db_export = QuboleOperator( task_id="db_export", command_type="dbexportcmd", mode=1, hive_table="default_qubole_airline_origin_destination", db_table="exported_airline_origin_destination", partition_spec="dt=20110104-02", dbtap_id=2064, ) # [END howto_operator_qubole_run_db_export] branching >> db_query >> db_export >> join # [START howto_operator_qubole_run_db_import] db_import = QuboleOperator( task_id="db_import", command_type="dbimportcmd", mode=1, hive_table="default_qubole_airline_origin_destination", db_table="exported_airline_origin_destination", where_clause="id < 10", parallelism=2, dbtap_id=2064, ) # [END howto_operator_qubole_run_db_import] # [START howto_operator_qubole_run_spark_scala] prog = """ import scala.math.random import org.apache.spark._ /** Computes an approximation to pi */ object SparkPi { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Spark Pi") val spark = new SparkContext(conf) val slices = if (args.length > 0) args(0).toInt else 2 val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow val count = spark.parallelize(1 until n, slices).map { i => val x = random * 2 - 1 val y = random * 2 - 1 if (x*x + y*y < 1) 1 else 0 }.reduce(_ + _) println("Pi is roughly " + 4.0 * count / n) spark.stop() } } """ spark_cmd = QuboleOperator( task_id="spark_cmd", command_type="sparkcmd", program=prog, language="scala", arguments="--class SparkPi", tags="airflow_example_run", ) # [END howto_operator_qubole_run_spark_scala] branching >> db_import >> spark_cmd >> join from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?