Source code for tests.system.openai.example_trigger_batch_operator

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import Any, Literal

from airflow.decorators import dag, task

[docs]OPENAI_CONN_ID = "openai_default"
[docs]POKEMONS = [ "pikachu", "charmander", "bulbasaur", ]
@dag( schedule=None, catchup=False, )
[docs]def openai_batch_chat_completions(): @task def generate_messages(pokemon, **context) -> list[dict[str, Any]]: return [{"role": "user", "content": f"Describe the info about {pokemon}?"}] @task def batch_upload(messages_batch, **context) -> str: import tempfile import uuid from pydantic import BaseModel, Field from airflow.providers.openai.hooks.openai import OpenAIHook class RequestBody(BaseModel): model: str messages: list[dict[str, Any]] max_tokens: int = Field(default=1000) class BatchModel(BaseModel): custom_id: str method: Literal["POST"] url: Literal["/v1/chat/completions"] body: RequestBody model = "gpt-4o-mini" max_tokens = 1000 hook = OpenAIHook(conn_id=OPENAI_CONN_ID) with tempfile.NamedTemporaryFile(mode="w", delete=False) as file: for messages in messages_batch: file.write( BatchModel( custom_id=str(uuid.uuid4()), method="POST", url="/v1/chat/completions", body=RequestBody( model=model, max_tokens=max_tokens, messages=messages, ), ).model_dump_json() + "\n" ) batch_file = hook.upload_file(file.name, purpose="batch") return batch_file.id @task def cleanup_batch_output_file(batch_id, **context): from airflow.providers.openai.hooks.openai import OpenAIHook hook = OpenAIHook(conn_id=OPENAI_CONN_ID) batch = hook.get_batch(batch_id) if batch.output_file_id: hook.delete_file(batch.output_file_id) messages = generate_messages.expand(pokemon=POKEMONS) batch_file_id = batch_upload(messages_batch=messages) # [START howto_operator_openai_trigger_operator] from airflow.providers.openai.operators.openai import OpenAITriggerBatchOperator batch_id = OpenAITriggerBatchOperator( task_id="batch_operator_deferred", conn_id=OPENAI_CONN_ID, file_id=batch_file_id, endpoint="/v1/chat/completions", deferrable=True, ) # [END howto_operator_openai_trigger_operator] cleanup_batch_output = cleanup_batch_output_file( batch_id="{{ ti.xcom_pull(task_ids='batch_operator_deferred', key='return_value') }}" ) batch_id >> cleanup_batch_output
openai_batch_chat_completions() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?