Source code for airflow.providers.openai.hooks.openai
# Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License.from__future__importannotationsfromfunctoolsimportcached_propertyfromtypingimportAnyfromopenaiimportOpenAIfromairflow.hooks.baseimportBaseHook
[docs]classOpenAIHook(BaseHook):""" Use OpenAI SDK to interact with OpenAI APIs. .. seealso:: https://platform.openai.com/docs/introduction/overview :param conn_id: :ref:`OpenAI connection id <howto/connection:openai>` """
[docs]defget_ui_field_behaviour(cls)->dict[str,Any]:"""Return custom field behaviour."""return{"hidden_fields":["schema","port","login"],"relabeling":{"password":"API Key"},"placeholders":{},}
[docs]defconn(self)->OpenAI:"""Return an OpenAI connection object."""returnself.get_conn()
[docs]defget_conn(self)->OpenAI:"""Return an OpenAI connection object."""conn=self.get_connection(self.conn_id)extras=conn.extra_dejsonopenai_client_kwargs=extras.get("openai_client_kwargs",{})api_key=openai_client_kwargs.pop("api_key",None)orconn.passwordbase_url=openai_client_kwargs.pop("base_url",None)orconn.hostorNonereturnOpenAI(api_key=api_key,base_url=base_url,**openai_client_kwargs,)
[docs]defcreate_embeddings(self,text:str|list[str]|list[int]|list[list[int]],model:str="text-embedding-ada-002",**kwargs:Any,)->list[float]:"""Generate embeddings for the given text using the given model. :param text: The text to generate embeddings for. :param model: The model to use for generating embeddings. """response=self.conn.embeddings.create(model=model,input=text,**kwargs)embeddings:list[float]=response.data[0].embeddingreturnembeddings