Source code for airflow.providers.openai.operators.openai
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from functools import cached_property
from typing import TYPE_CHECKING, Any, Sequence
from airflow.models import BaseOperator
from airflow.providers.openai.hooks.openai import OpenAIHook
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]class OpenAIEmbeddingOperator(BaseOperator):
"""
Operator that accepts input text to generate OpenAI embeddings using the specified model.
.. seealso::
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:OpenAIEmbeddingOperator`
:param conn_id: The OpenAI connection.
:param input_text: The text to generate OpenAI embeddings on. Either input_text or input_callable
should be provided.
:param model: The OpenAI model to be used for generating the embeddings.
:param embedding_kwargs: For possible option check
.. seealso:: https://platform.openai.com/docs/api-reference/embeddings/create
"""
[docs] template_fields: Sequence[str] = ("input_text",)
def __init__(
self,
conn_id: str,
input_text: str | list[Any],
model: str = "text-embedding-ada-002",
embedding_kwargs: dict | None = None,
**kwargs: Any,
):
self.embedding_kwargs = embedding_kwargs or {}
super().__init__(**kwargs)
self.conn_id = conn_id
self.input_text = input_text
self.model = model
@cached_property
[docs] def hook(self) -> OpenAIHook:
"""Return an instance of the OpenAIHook."""
return OpenAIHook(conn_id=self.conn_id)
[docs] def execute(self, context: Context) -> list[float]:
self.log.info("Input text: %s", self.input_text)
embeddings = self.hook.create_embeddings(self.input_text, model=self.model, **self.embedding_kwargs)
self.log.info("Embeddings: %s", embeddings)
return embeddings