Source code for airflow.providers.openai.operators.openai

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from __future__ import annotations

from functools import cached_property
from typing import TYPE_CHECKING, Any, Sequence

from airflow.models import BaseOperator
from airflow.providers.openai.hooks.openai import OpenAIHook

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class OpenAIEmbeddingOperator(BaseOperator): """ Operator that accepts input text to generate OpenAI embeddings using the specified model. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:OpenAIEmbeddingOperator` :param conn_id: The OpenAI connection. :param input_text: The text to generate OpenAI embeddings on. Either input_text or input_callable should be provided. :param model: The OpenAI model to be used for generating the embeddings. :param embedding_kwargs: For possible option check .. seealso:: https://platform.openai.com/docs/api-reference/embeddings/create """
[docs] template_fields: Sequence[str] = ("input_text",)
def __init__( self, conn_id: str, input_text: str | list[Any], model: str = "text-embedding-ada-002", embedding_kwargs: dict | None = None, **kwargs: Any, ): self.embedding_kwargs = embedding_kwargs or {} super().__init__(**kwargs) self.conn_id = conn_id self.input_text = input_text self.model = model @cached_property
[docs] def hook(self) -> OpenAIHook: """Return an instance of the OpenAIHook.""" return OpenAIHook(conn_id=self.conn_id)
[docs] def execute(self, context: Context) -> list[float]: self.log.info("Input text: %s", self.input_text) embeddings = self.hook.create_embeddings(self.input_text, model=self.model, **self.embedding_kwargs) self.log.info("Embeddings: %s", embeddings) return embeddings

Was this entry helpful?