# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Spelling exceptions.
.. spelling:word-list::
CreateRunResponse
DatasetResource
LinkedServiceResource
LROPoller
PipelineResource
PipelineRun
TriggerResource
datafactory
DataFlow
mgmt
"""
from __future__ import annotations
import inspect
import time
import warnings
from functools import wraps
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, cast
from asgiref.sync import sync_to_async
from azure.core.exceptions import ServiceRequestError
from azure.identity import ClientSecretCredential, DefaultAzureCredential
from azure.identity.aio import (
ClientSecretCredential as AsyncClientSecretCredential,
DefaultAzureCredential as AsyncDefaultAzureCredential,
)
from azure.mgmt.datafactory import DataFactoryManagementClient
from azure.mgmt.datafactory.aio import DataFactoryManagementClient as AsyncDataFactoryManagementClient
from airflow.exceptions import AirflowException, AirflowProviderDeprecationWarning
from airflow.hooks.base import BaseHook
from airflow.typing_compat import TypedDict
if TYPE_CHECKING:
from azure.core.polling import LROPoller
from azure.mgmt.datafactory.models import (
CreateRunResponse,
DataFlow,
DatasetResource,
Factory,
LinkedServiceResource,
PipelineResource,
PipelineRun,
TriggerResource,
)
[docs]Credentials = Union[ClientSecretCredential, DefaultAzureCredential]
[docs]AsyncCredentials = Union[AsyncClientSecretCredential, AsyncDefaultAzureCredential]
[docs]T = TypeVar("T", bound=Any)
[docs]def provide_targeted_factory(func: Callable) -> Callable:
"""
Provide the targeted factory to the decorated function in case it isn't specified.
If ``resource_group_name`` or ``factory_name`` is not provided it defaults to the value specified in
the connection extras.
"""
signature = inspect.signature(func)
@wraps(func)
def wrapper(*args, **kwargs) -> Callable:
bound_args = signature.bind(*args, **kwargs)
def bind_argument(arg, default_key):
# Check if arg was not included in the function signature or, if it is, the value is not provided.
if arg not in bound_args.arguments or bound_args.arguments[arg] is None:
self = args[0]
conn = self.get_connection(self.conn_id)
extras = conn.extra_dejson
default_value = extras.get(default_key)
if not default_value and extras.get(f"extra__azure_data_factory__{default_key}"):
warnings.warn(
f"`extra__azure_data_factory__{default_key}` is deprecated in azure connection extra,"
f" please use `{default_key}` instead",
AirflowProviderDeprecationWarning,
stacklevel=2,
)
default_value = extras.get(f"extra__azure_data_factory__{default_key}")
if not default_value:
raise AirflowException("Could not determine the targeted data factory.")
bound_args.arguments[arg] = default_value
bind_argument("resource_group_name", "resource_group_name")
bind_argument("factory_name", "factory_name")
return func(*bound_args.args, **bound_args.kwargs)
return wrapper
[docs]class PipelineRunInfo(TypedDict):
"""Type class for the pipeline run info dictionary."""
[docs] factory_name: str | None
[docs] resource_group_name: str | None
[docs]class AzureDataFactoryPipelineRunStatus:
"""Azure Data Factory pipeline operation statuses."""
[docs] IN_PROGRESS = "InProgress"
[docs] SUCCEEDED = "Succeeded"
[docs] CANCELING = "Canceling"
[docs] CANCELLED = "Cancelled"
[docs] TERMINAL_STATUSES = {CANCELLED, FAILED, SUCCEEDED}
[docs] FAILURE_STATES = {FAILED, CANCELLED}
[docs]class AzureDataFactoryPipelineRunException(AirflowException):
"""An exception that indicates a pipeline run failed to complete."""
[docs]def get_field(extras: dict, field_name: str, strict: bool = False):
"""Get field from extra, first checking short name, then for backcompat we check for prefixed name."""
backcompat_prefix = "extra__azure_data_factory__"
if field_name.startswith("extra__"):
raise ValueError(
f"Got prefixed name {field_name}; please remove the '{backcompat_prefix}' prefix "
"when using this method."
)
if field_name in extras:
return extras[field_name] or None
prefixed_name = f"{backcompat_prefix}{field_name}"
if prefixed_name in extras:
warnings.warn(
f"`{prefixed_name}` is deprecated in azure connection extra,"
f" please use `{field_name}` instead",
AirflowProviderDeprecationWarning,
stacklevel=2,
)
return extras[prefixed_name] or None
if strict:
raise KeyError(f"Field {field_name} not found in extras")
[docs]class AzureDataFactoryHook(BaseHook):
"""
A hook to interact with Azure Data Factory.
:param azure_data_factory_conn_id: The :ref:`Azure Data Factory connection id<howto/connection:adf>`.
"""
[docs] conn_type: str = "azure_data_factory"
[docs] conn_name_attr: str = "azure_data_factory_conn_id"
[docs] default_conn_name: str = "azure_data_factory_default"
[docs] hook_name: str = "Azure Data Factory"
@staticmethod
@staticmethod
[docs] def get_ui_field_behaviour() -> dict[str, Any]:
"""Returns custom field behaviour."""
return {
"hidden_fields": ["schema", "port", "host", "extra"],
"relabeling": {
"login": "Client ID",
"password": "Secret",
},
}
def __init__(self, azure_data_factory_conn_id: str = default_conn_name):
self._conn: DataFactoryManagementClient = None
self.conn_id = azure_data_factory_conn_id
super().__init__()
[docs] def get_conn(self) -> DataFactoryManagementClient:
if self._conn is not None:
return self._conn
conn = self.get_connection(self.conn_id)
extras = conn.extra_dejson
tenant = get_field(extras, "tenantId")
try:
subscription_id = get_field(extras, "subscriptionId", strict=True)
except KeyError:
raise ValueError("A Subscription ID is required to connect to Azure Data Factory.")
credential: Credentials
if conn.login is not None and conn.password is not None:
if not tenant:
raise ValueError("A Tenant ID is required when authenticating with Client ID and Secret.")
credential = ClientSecretCredential(
client_id=conn.login, client_secret=conn.password, tenant_id=tenant
)
else:
credential = DefaultAzureCredential()
self._conn = self._create_client(credential, subscription_id)
return self._conn
[docs] def refresh_conn(self) -> DataFactoryManagementClient:
self._conn = None
return self.get_conn()
@provide_targeted_factory
[docs] def get_factory(
self, resource_group_name: str | None = None, factory_name: str | None = None, **config: Any
) -> Factory:
"""
Get the factory.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The factory.
"""
return self.get_conn().factories.get(resource_group_name, factory_name, **config)
def _factory_exists(self, resource_group_name, factory_name) -> bool:
"""Return whether or not the factory already exists."""
factories = {
factory.name for factory in self.get_conn().factories.list_by_resource_group(resource_group_name)
}
return factory_name in factories
@staticmethod
def _create_client(credential: Credentials, subscription_id: str):
return DataFactoryManagementClient(
credential=credential,
subscription_id=subscription_id,
)
@provide_targeted_factory
[docs] def update_factory(
self,
factory: Factory,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> Factory:
"""
Update the factory.
:param factory: The factory resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the factory does not exist.
:return: The factory.
"""
if not self._factory_exists(resource_group_name, factory_name):
raise AirflowException(f"Factory {factory!r} does not exist.")
return self.get_conn().factories.create_or_update(
resource_group_name, factory_name, factory, **config
)
@provide_targeted_factory
[docs] def create_factory(
self,
factory: Factory,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> Factory:
"""
Create the factory.
:param factory: The factory resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the factory already exists.
:return: The factory.
"""
if self._factory_exists(resource_group_name, factory_name):
raise AirflowException(f"Factory {factory!r} already exists.")
return self.get_conn().factories.create_or_update(
resource_group_name, factory_name, factory, **config
)
@provide_targeted_factory
[docs] def delete_factory(
self, resource_group_name: str | None = None, factory_name: str | None = None, **config: Any
) -> None:
"""
Delete the factory.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().factories.delete(resource_group_name, factory_name, **config)
@provide_targeted_factory
[docs] def get_linked_service(
self,
linked_service_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> LinkedServiceResource:
"""
Get the linked service.
:param linked_service_name: The linked service name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The linked service.
"""
return self.get_conn().linked_services.get(
resource_group_name, factory_name, linked_service_name, **config
)
def _linked_service_exists(self, resource_group_name, factory_name, linked_service_name) -> bool:
"""Return whether or not the linked service already exists."""
linked_services = {
linked_service.name
for linked_service in self.get_conn().linked_services.list_by_factory(
resource_group_name, factory_name
)
}
return linked_service_name in linked_services
@provide_targeted_factory
[docs] def update_linked_service(
self,
linked_service_name: str,
linked_service: LinkedServiceResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> LinkedServiceResource:
"""
Update the linked service.
:param linked_service_name: The linked service name.
:param linked_service: The linked service resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the linked service does not exist.
:return: The linked service.
"""
if not self._linked_service_exists(resource_group_name, factory_name, linked_service_name):
raise AirflowException(f"Linked service {linked_service_name!r} does not exist.")
return self.get_conn().linked_services.create_or_update(
resource_group_name, factory_name, linked_service_name, linked_service, **config
)
@provide_targeted_factory
[docs] def create_linked_service(
self,
linked_service_name: str,
linked_service: LinkedServiceResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> LinkedServiceResource:
"""
Create the linked service.
:param linked_service_name: The linked service name.
:param linked_service: The linked service resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the linked service already exists.
:return: The linked service.
"""
if self._linked_service_exists(resource_group_name, factory_name, linked_service_name):
raise AirflowException(f"Linked service {linked_service_name!r} already exists.")
return self.get_conn().linked_services.create_or_update(
resource_group_name, factory_name, linked_service_name, linked_service, **config
)
@provide_targeted_factory
[docs] def delete_linked_service(
self,
linked_service_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Delete the linked service.
:param linked_service_name: The linked service name.
:param resource_group_name: The linked service name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().linked_services.delete(
resource_group_name, factory_name, linked_service_name, **config
)
@provide_targeted_factory
[docs] def get_dataset(
self,
dataset_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> DatasetResource:
"""
Get the dataset.
:param dataset_name: The dataset name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The dataset.
"""
return self.get_conn().datasets.get(resource_group_name, factory_name, dataset_name, **config)
def _dataset_exists(self, resource_group_name, factory_name, dataset_name) -> bool:
"""Return whether or not the dataset already exists."""
datasets = {
dataset.name
for dataset in self.get_conn().datasets.list_by_factory(resource_group_name, factory_name)
}
return dataset_name in datasets
@provide_targeted_factory
[docs] def update_dataset(
self,
dataset_name: str,
dataset: DatasetResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> DatasetResource:
"""
Update the dataset.
:param dataset_name: The dataset name.
:param dataset: The dataset resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the dataset does not exist.
:return: The dataset.
"""
if not self._dataset_exists(resource_group_name, factory_name, dataset_name):
raise AirflowException(f"Dataset {dataset_name!r} does not exist.")
return self.get_conn().datasets.create_or_update(
resource_group_name, factory_name, dataset_name, dataset, **config
)
@provide_targeted_factory
[docs] def create_dataset(
self,
dataset_name: str,
dataset: DatasetResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> DatasetResource:
"""
Create the dataset.
:param dataset_name: The dataset name.
:param dataset: The dataset resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the dataset already exists.
:return: The dataset.
"""
if self._dataset_exists(resource_group_name, factory_name, dataset_name):
raise AirflowException(f"Dataset {dataset_name!r} already exists.")
return self.get_conn().datasets.create_or_update(
resource_group_name, factory_name, dataset_name, dataset, **config
)
@provide_targeted_factory
[docs] def delete_dataset(
self,
dataset_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Delete the dataset.
:param dataset_name: The dataset name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().datasets.delete(resource_group_name, factory_name, dataset_name, **config)
@provide_targeted_factory
[docs] def get_dataflow(
self,
dataflow_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> DataFlow:
"""
Get the dataflow.
:param dataflow_name: The dataflow name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The dataflow.
"""
return self.get_conn().data_flows.get(resource_group_name, factory_name, dataflow_name, **config)
def _dataflow_exists(
self,
dataflow_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
) -> bool:
"""Return whether the dataflow already exists."""
dataflows = {
dataflow.name
for dataflow in self.get_conn().data_flows.list_by_factory(resource_group_name, factory_name)
}
return dataflow_name in dataflows
@provide_targeted_factory
[docs] def update_dataflow(
self,
dataflow_name: str,
dataflow: DataFlow,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> DataFlow:
"""
Update the dataflow.
:param dataflow_name: The dataflow name.
:param dataflow: The dataflow resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the dataset does not exist.
:return: The dataflow.
"""
if not self._dataflow_exists(
dataflow_name,
resource_group_name,
factory_name,
):
raise AirflowException(f"Dataflow {dataflow_name!r} does not exist.")
return self.get_conn().data_flows.create_or_update(
resource_group_name, factory_name, dataflow_name, dataflow, **config
)
@provide_targeted_factory
[docs] def create_dataflow(
self,
dataflow_name: str,
dataflow: DataFlow,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> DataFlow:
"""
Create the dataflow.
:param dataflow_name: The dataflow name.
:param dataflow: The dataflow resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the dataset already exists.
:return: The dataset.
"""
if self._dataflow_exists(dataflow_name, resource_group_name, factory_name):
raise AirflowException(f"Dataflow {dataflow_name!r} already exists.")
return self.get_conn().data_flows.create_or_update(
resource_group_name, factory_name, dataflow_name, dataflow, **config
)
@provide_targeted_factory
[docs] def delete_dataflow(
self,
dataflow_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Delete the dataflow.
:param dataflow_name: The dataflow name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().data_flows.delete(resource_group_name, factory_name, dataflow_name, **config)
@provide_targeted_factory
[docs] def get_pipeline(
self,
pipeline_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> PipelineResource:
"""
Get the pipeline.
:param pipeline_name: The pipeline name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The pipeline.
"""
return self.get_conn().pipelines.get(resource_group_name, factory_name, pipeline_name, **config)
def _pipeline_exists(self, resource_group_name, factory_name, pipeline_name) -> bool:
"""Return whether or not the pipeline already exists."""
pipelines = {
pipeline.name
for pipeline in self.get_conn().pipelines.list_by_factory(resource_group_name, factory_name)
}
return pipeline_name in pipelines
@provide_targeted_factory
[docs] def update_pipeline(
self,
pipeline_name: str,
pipeline: PipelineResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> PipelineResource:
"""
Update the pipeline.
:param pipeline_name: The pipeline name.
:param pipeline: The pipeline resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the pipeline does not exist.
:return: The pipeline.
"""
if not self._pipeline_exists(resource_group_name, factory_name, pipeline_name):
raise AirflowException(f"Pipeline {pipeline_name!r} does not exist.")
return self.get_conn().pipelines.create_or_update(
resource_group_name, factory_name, pipeline_name, pipeline, **config
)
@provide_targeted_factory
[docs] def create_pipeline(
self,
pipeline_name: str,
pipeline: PipelineResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> PipelineResource:
"""
Create the pipeline.
:param pipeline_name: The pipeline name.
:param pipeline: The pipeline resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the pipeline already exists.
:return: The pipeline.
"""
if self._pipeline_exists(resource_group_name, factory_name, pipeline_name):
raise AirflowException(f"Pipeline {pipeline_name!r} already exists.")
return self.get_conn().pipelines.create_or_update(
resource_group_name, factory_name, pipeline_name, pipeline, **config
)
@provide_targeted_factory
[docs] def delete_pipeline(
self,
pipeline_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Delete the pipeline.
:param pipeline_name: The pipeline name.
:param resource_group_name: The pipeline name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().pipelines.delete(resource_group_name, factory_name, pipeline_name, **config)
@provide_targeted_factory
[docs] def run_pipeline(
self,
pipeline_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> CreateRunResponse:
"""
Run a pipeline.
:param pipeline_name: The pipeline name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The pipeline run.
"""
return self.get_conn().pipelines.create_run(
resource_group_name, factory_name, pipeline_name, **config
)
@provide_targeted_factory
[docs] def get_pipeline_run(
self,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> PipelineRun:
"""
Get the pipeline run.
:param run_id: The pipeline run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The pipeline run.
"""
return self.get_conn().pipeline_runs.get(resource_group_name, factory_name, run_id, **config)
[docs] def get_pipeline_run_status(
self,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
) -> str:
"""
Get a pipeline run's current status.
:param run_id: The pipeline run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:return: The status of the pipeline run.
"""
self.log.info("Getting the status of run ID %s.", run_id)
pipeline_run_status = self.get_pipeline_run(
run_id=run_id,
factory_name=factory_name,
resource_group_name=resource_group_name,
).status
self.log.info("Current status of pipeline run %s: %s", run_id, pipeline_run_status)
return pipeline_run_status
[docs] def wait_for_pipeline_run_status(
self,
run_id: str,
expected_statuses: str | set[str],
resource_group_name: str | None = None,
factory_name: str | None = None,
check_interval: int = 60,
timeout: int = 60 * 60 * 24 * 7,
) -> bool:
"""
Waits for a pipeline run to match an expected status.
:param run_id: The pipeline run identifier.
:param expected_statuses: The desired status(es) to check against a pipeline run's current status.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param check_interval: Time in seconds to check on a pipeline run's status.
:param timeout: Time in seconds to wait for a pipeline to reach a terminal status or the expected
status.
:return: Boolean indicating if the pipeline run has reached the ``expected_status``.
"""
pipeline_run_info = PipelineRunInfo(
run_id=run_id,
factory_name=factory_name,
resource_group_name=resource_group_name,
)
pipeline_run_status = self.get_pipeline_run_status(**pipeline_run_info)
executed_after_token_refresh = True
start_time = time.monotonic()
while (
pipeline_run_status not in AzureDataFactoryPipelineRunStatus.TERMINAL_STATUSES
and pipeline_run_status not in expected_statuses
):
# Check if the pipeline-run duration has exceeded the ``timeout`` configured.
if start_time + timeout < time.monotonic():
raise AzureDataFactoryPipelineRunException(
f"Pipeline run {run_id} has not reached a terminal status after {timeout} seconds."
)
# Wait to check the status of the pipeline run based on the ``check_interval`` configured.
time.sleep(check_interval)
try:
pipeline_run_status = self.get_pipeline_run_status(**pipeline_run_info)
executed_after_token_refresh = True
except ServiceRequestError:
if executed_after_token_refresh:
self.refresh_conn()
continue
raise
return pipeline_run_status in expected_statuses
@provide_targeted_factory
[docs] def cancel_pipeline_run(
self,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Cancel the pipeline run.
:param run_id: The pipeline run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().pipeline_runs.cancel(resource_group_name, factory_name, run_id, **config)
@provide_targeted_factory
[docs] def get_trigger(
self,
trigger_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> TriggerResource:
"""
Get the trigger.
:param trigger_name: The trigger name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: The trigger.
"""
return self.get_conn().triggers.get(resource_group_name, factory_name, trigger_name, **config)
def _trigger_exists(self, resource_group_name, factory_name, trigger_name) -> bool:
"""Return whether or not the trigger already exists."""
triggers = {
trigger.name
for trigger in self.get_conn().triggers.list_by_factory(resource_group_name, factory_name)
}
return trigger_name in triggers
@provide_targeted_factory
[docs] def update_trigger(
self,
trigger_name: str,
trigger: TriggerResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> TriggerResource:
"""
Update the trigger.
:param trigger_name: The trigger name.
:param trigger: The trigger resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the trigger does not exist.
:return: The trigger.
"""
if not self._trigger_exists(resource_group_name, factory_name, trigger_name):
raise AirflowException(f"Trigger {trigger_name!r} does not exist.")
return self.get_conn().triggers.create_or_update(
resource_group_name, factory_name, trigger_name, trigger, **config
)
@provide_targeted_factory
[docs] def create_trigger(
self,
trigger_name: str,
trigger: TriggerResource,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> TriggerResource:
"""
Create the trigger.
:param trigger_name: The trigger name.
:param trigger: The trigger resource definition.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:raise AirflowException: If the trigger already exists.
:return: The trigger.
"""
if self._trigger_exists(resource_group_name, factory_name, trigger_name):
raise AirflowException(f"Trigger {trigger_name!r} already exists.")
return self.get_conn().triggers.create_or_update(
resource_group_name, factory_name, trigger_name, trigger, **config
)
@provide_targeted_factory
[docs] def delete_trigger(
self,
trigger_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Delete the trigger.
:param trigger_name: The trigger name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().triggers.delete(resource_group_name, factory_name, trigger_name, **config)
@provide_targeted_factory
[docs] def start_trigger(
self,
trigger_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> LROPoller:
"""
Start the trigger.
:param trigger_name: The trigger name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: An Azure operation poller.
"""
return self.get_conn().triggers.begin_start(resource_group_name, factory_name, trigger_name, **config)
@provide_targeted_factory
[docs] def stop_trigger(
self,
trigger_name: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> LROPoller:
"""
Stop the trigger.
:param trigger_name: The trigger name.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
:return: An Azure operation poller.
"""
return self.get_conn().triggers.begin_stop(resource_group_name, factory_name, trigger_name, **config)
@provide_targeted_factory
[docs] def rerun_trigger(
self,
trigger_name: str,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Rerun the trigger.
:param trigger_name: The trigger name.
:param run_id: The trigger run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
return self.get_conn().trigger_runs.rerun(
resource_group_name, factory_name, trigger_name, run_id, **config
)
@provide_targeted_factory
[docs] def cancel_trigger(
self,
trigger_name: str,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Cancel the trigger.
:param trigger_name: The trigger name.
:param run_id: The trigger run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
self.get_conn().trigger_runs.cancel(resource_group_name, factory_name, trigger_name, run_id, **config)
[docs] def test_connection(self) -> tuple[bool, str]:
"""Test a configured Azure Data Factory connection."""
success = (True, "Successfully connected to Azure Data Factory.")
try:
# Attempt to list existing factories under the configured subscription and retrieve the first in
# the returned iterator. The Azure Data Factory API does allow for creation of a
# DataFactoryManagementClient with incorrect values but then will fail properly once items are
# retrieved using the client. We need to _actually_ try to retrieve an object to properly test the
# connection.
next(self.get_conn().factories.list())
return success
except StopIteration:
# If the iterator returned is empty it should still be considered a successful connection since
# it's possible to create a Data Factory via the ``AzureDataFactoryHook`` and none could
# legitimately exist yet.
return success
except Exception as e:
return False, str(e)
[docs]def provide_targeted_factory_async(func: T) -> T:
"""
Provide the targeted factory to the async decorated function in case it isn't specified.
If ``resource_group_name`` or ``factory_name`` is not provided it defaults to the value specified in
the connection extras.
"""
signature = inspect.signature(func)
@wraps(func)
async def wrapper(*args: Any, **kwargs: Any) -> Any:
bound_args = signature.bind(*args, **kwargs)
async def bind_argument(arg: Any, default_key: str) -> None:
# Check if arg was not included in the function signature or, if it is, the value is not provided.
if arg not in bound_args.arguments or bound_args.arguments[arg] is None:
self = args[0]
conn = await sync_to_async(self.get_connection)(self.conn_id)
extras = conn.extra_dejson
default_value = extras.get(default_key) or extras.get(
f"extra__azure_data_factory__{default_key}"
)
if not default_value and extras.get(f"extra__azure_data_factory__{default_key}"):
warnings.warn(
f"`extra__azure_data_factory__{default_key}` is deprecated in azure connection extra,"
f" please use `{default_key}` instead",
AirflowProviderDeprecationWarning,
stacklevel=2,
)
default_value = extras.get(f"extra__azure_data_factory__{default_key}")
if not default_value:
raise AirflowException("Could not determine the targeted data factory.")
bound_args.arguments[arg] = default_value
await bind_argument("resource_group_name", "resource_group_name")
await bind_argument("factory_name", "factory_name")
return await func(*bound_args.args, **bound_args.kwargs)
return cast(T, wrapper)
[docs]class AzureDataFactoryAsyncHook(AzureDataFactoryHook):
"""
An Async Hook that connects to Azure DataFactory to perform pipeline operations.
:param azure_data_factory_conn_id: The :ref:`Azure Data Factory connection id<howto/connection:adf>`.
"""
[docs] default_conn_name: str = "azure_data_factory_default"
def __init__(self, azure_data_factory_conn_id: str = default_conn_name):
self._async_conn: AsyncDataFactoryManagementClient = None
self.conn_id = azure_data_factory_conn_id
super().__init__(azure_data_factory_conn_id=azure_data_factory_conn_id)
[docs] async def get_async_conn(self) -> AsyncDataFactoryManagementClient:
"""Get async connection and connect to azure data factory."""
if self._async_conn is not None:
return self._async_conn
conn = await sync_to_async(self.get_connection)(self.conn_id)
extras = conn.extra_dejson
tenant = get_field(extras, "tenantId")
try:
subscription_id = get_field(extras, "subscriptionId", strict=True)
except KeyError:
raise ValueError("A Subscription ID is required to connect to Azure Data Factory.")
credential: AsyncCredentials
if conn.login is not None and conn.password is not None:
if not tenant:
raise ValueError("A Tenant ID is required when authenticating with Client ID and Secret.")
credential = AsyncClientSecretCredential(
client_id=conn.login, client_secret=conn.password, tenant_id=tenant
)
else:
credential = AsyncDefaultAzureCredential()
self._async_conn = AsyncDataFactoryManagementClient(
credential=credential,
subscription_id=subscription_id,
)
return self._async_conn
[docs] async def refresh_conn(self) -> AsyncDataFactoryManagementClient:
self._conn = None
return await self.get_async_conn()
@provide_targeted_factory_async
[docs] async def get_pipeline_run(
self,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> PipelineRun:
"""
Connect to Azure Data Factory asynchronously to get the pipeline run details by run id.
:param run_id: The pipeline run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
client = await self.get_async_conn()
pipeline_run = await client.pipeline_runs.get(resource_group_name, factory_name, run_id)
return pipeline_run
[docs] async def get_adf_pipeline_run_status(
self, run_id: str, resource_group_name: str | None = None, factory_name: str | None = None
) -> str:
"""
Connect to Azure Data Factory asynchronously and get the pipeline status by run_id.
:param run_id: The pipeline run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
"""
pipeline_run = await self.get_pipeline_run(
run_id=run_id,
factory_name=factory_name,
resource_group_name=resource_group_name,
)
status: str = pipeline_run.status
return status
@provide_targeted_factory_async
[docs] async def cancel_pipeline_run(
self,
run_id: str,
resource_group_name: str | None = None,
factory_name: str | None = None,
**config: Any,
) -> None:
"""
Cancel the pipeline run.
:param run_id: The pipeline run identifier.
:param resource_group_name: The resource group name.
:param factory_name: The factory name.
:param config: Extra parameters for the ADF client.
"""
client = await self.get_async_conn()
try:
await client.pipeline_runs.cancel(resource_group_name, factory_name, run_id)
except Exception as e:
raise AirflowException(e)