#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for DataprocSubmitJobOperator with sparkr job.
"""
from __future__ import annotations
import os
from datetime import datetime
from pathlib import Path
from airflow import models
from airflow.providers.google.cloud.operators.dataproc import (
    DataprocCreateClusterOperator,
    DataprocDeleteClusterOperator,
    DataprocSubmitJobOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.transfers.local_to_gcs import LocalFilesystemToGCSOperator
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID") 
[docs]DAG_ID = "dataproc_sparkr" 
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "") 
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}" 
[docs]CLUSTER_NAME = f"dataproc-sparkr-{ENV_ID}" 
[docs]SPARKR_SRC = str(Path(__file__).parent / "resources" / "hello_world.R") 
[docs]SPARKR_FILE = "hello_world.R" 
# Cluster definition
[docs]CLUSTER_CONFIG = {
    "master_config": {
        "num_instances": 1,
        "machine_type_uri": "n1-standard-4",
        "disk_config": {"boot_disk_type": "pd-standard", "boot_disk_size_gb": 1024},
    },
    "worker_config": {
        "num_instances": 2,
        "machine_type_uri": "n1-standard-4",
        "disk_config": {"boot_disk_type": "pd-standard", "boot_disk_size_gb": 1024}, 
    },
}
[docs]TIMEOUT = {"seconds": 1 * 24 * 60 * 60} 
# Jobs definitions
# [START how_to_cloud_dataproc_sparkr_config]
[docs]SPARKR_JOB = {
    "reference": {"project_id": PROJECT_ID},
    "placement": {"cluster_name": CLUSTER_NAME},
    "spark_r_job": {"main_r_file_uri": f"gs://{BUCKET_NAME}/{SPARKR_FILE}"}, 
}
# [END how_to_cloud_dataproc_sparkr_config]
with models.DAG(
    DAG_ID,
    schedule="@once",
    start_date=datetime(2021, 1, 1),
    catchup=False,
    tags=["example", "dataproc"],
) as dag:
[docs]    create_bucket = GCSCreateBucketOperator(
        task_id="create_bucket", bucket_name=BUCKET_NAME, project_id=PROJECT_ID 
    )
    upload_file = LocalFilesystemToGCSOperator(
        task_id="upload_file",
        src=SPARKR_SRC,
        dst=SPARKR_FILE,
        bucket=BUCKET_NAME,
    )
    create_cluster = DataprocCreateClusterOperator(
        task_id="create_cluster",
        project_id=PROJECT_ID,
        cluster_config=CLUSTER_CONFIG,
        region=REGION,
        cluster_name=CLUSTER_NAME,
    )
    sparkr_task = DataprocSubmitJobOperator(
        task_id="sparkr_task", job=SPARKR_JOB, region=REGION, project_id=PROJECT_ID
    )
    delete_cluster = DataprocDeleteClusterOperator(
        task_id="delete_cluster",
        project_id=PROJECT_ID,
        cluster_name=CLUSTER_NAME,
        region=REGION,
        trigger_rule=TriggerRule.ALL_DONE,
    )
    delete_bucket = GCSDeleteBucketOperator(
        task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE
    )
    # TEST SETUP
    create_bucket >> [upload_file, create_cluster]
    # TEST BODY
    [upload_file, create_cluster] >> sparkr_task
    # TEST TEARDOWN
    sparkr_task >> [delete_cluster, delete_bucket]
    from tests.system.utils.watcher import watcher
    # This test needs watcher in order to properly mark success/failure
    # when "teardown" task with trigger rule is part of the DAG
    list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run  # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)