Google Cloud Storage Operators¶
Cloud Storage allows world-wide storage and retrieval of any amount of data at any time. You can use Cloud Storage for a range of scenarios including serving website content, storing data for archival and disaster recovery, or distributing large data objects to users via direct download.
Prerequisite Tasks¶
Operators¶
GCSToBigQueryOperator¶
Use the
GCSToBigQueryOperator
to execute a BigQuery load job to load existing dataset from Google Cloud Storage to BigQuery table.
load_csv = GCSToBigQueryOperator(
task_id="gcs_to_bigquery_example",
bucket="cloud-samples-data",
source_objects=["bigquery/us-states/us-states.csv"],
destination_project_dataset_table=f"{DATASET_NAME}.{TABLE_NAME}",
schema_fields=[
{"name": "name", "type": "STRING", "mode": "NULLABLE"},
{"name": "post_abbr", "type": "STRING", "mode": "NULLABLE"},
],
write_disposition="WRITE_TRUNCATE",
)
Also you can use GCSToBigQueryOperator in the deferrable mode:
load_string_based_csv = GCSToBigQueryOperator(
task_id="gcs_to_bigquery_example_str_csv_async",
bucket="cloud-samples-data",
source_objects=["bigquery/us-states/us-states.csv"],
destination_project_dataset_table=f"{DATASET_NAME_STR}.{TABLE_NAME_STR}",
write_disposition="WRITE_TRUNCATE",
external_table=False,
autodetect=True,
max_id_key=MAX_ID_STR,
deferrable=True,
)
load_date_based_csv = GCSToBigQueryOperator(
task_id="gcs_to_bigquery_example_date_csv_async",
bucket="cloud-samples-data",
source_objects=["bigquery/us-states/us-states-by-date.csv"],
destination_project_dataset_table=f"{DATASET_NAME_DATE}.{TABLE_NAME_DATE}",
write_disposition="WRITE_TRUNCATE",
external_table=False,
autodetect=True,
max_id_key=MAX_ID_DATE,
deferrable=True,
)
GCSTimeSpanFileTransformOperator¶
Use the
GCSTimeSpanFileTransformOperator
to transform files that were modified in a specific time span (the data interval).
The time span is defined by the time span’s start and end timestamps. If a DAG
does not have a next DAG instance scheduled, the time span end infinite, meaning the operator
processes all files older than data_interval_start
.
gcs_timespan_transform_files_task = GCSTimeSpanFileTransformOperator(
task_id="gcs_timespan_transform_files",
source_bucket=BUCKET_NAME_SRC,
source_prefix=SOURCE_PREFIX,
source_gcp_conn_id=SOURCE_GCP_CONN_ID,
destination_bucket=BUCKET_NAME_DST,
destination_prefix=DESTINATION_PREFIX,
destination_gcp_conn_id=DESTINATION_GCP_CONN_ID,
transform_script=["python", TRANSFORM_SCRIPT_PATH],
)
GCSBucketCreateAclEntryOperator¶
Creates a new ACL entry on the specified bucket.
For parameter definition, take a look at
GCSBucketCreateAclEntryOperator
Using the operator¶
gcs_bucket_create_acl_entry_task = GCSBucketCreateAclEntryOperator(
bucket=BUCKET_NAME,
entity=GCS_ACL_ENTITY,
role=GCS_ACL_BUCKET_ROLE,
task_id="gcs_bucket_create_acl_entry_task",
)
Templating¶
template_fields: Sequence[str] = (
"bucket",
"entity",
"role",
"user_project",
"impersonation_chain",
)
More information¶
See Google Cloud Storage Documentation to create a new ACL entry for a bucket.
GCSObjectCreateAclEntryOperator¶
Creates a new ACL entry on the specified object.
For parameter definition, take a look at
GCSObjectCreateAclEntryOperator
Using the operator¶
gcs_object_create_acl_entry_task = GCSObjectCreateAclEntryOperator(
bucket=BUCKET_NAME,
object_name=FILE_NAME,
entity=GCS_ACL_ENTITY,
role=GCS_ACL_OBJECT_ROLE,
task_id="gcs_object_create_acl_entry_task",
)
Templating¶
template_fields: Sequence[str] = (
"bucket",
"object_name",
"entity",
"generation",
"role",
"user_project",
"impersonation_chain",
)
More information¶
See Google Cloud Storage insert documentation to create a ACL entry for ObjectAccess.
Deleting Bucket¶
Deleting Bucket allows you to remove bucket object from the Google Cloud Storage.
It is performed through the
GCSDeleteBucketOperator
operator.
delete_bucket = GCSDeleteBucketOperator(task_id="delete_bucket", bucket_name=BUCKET_NAME)
You can use Jinja templating with
bucket_name
, gcp_conn_id
, impersonation_chain
parameters which allows you to dynamically determine values.
Sensors¶
GCSObjectExistenceSensor¶
Use the GCSObjectExistenceSensor
to wait (poll) for the existence of a file in Google Cloud Storage.
gcs_object_exists = GCSObjectExistenceSensor(
bucket=BUCKET_NAME,
object=FILE_NAME,
task_id="gcs_object_exists_task",
)
GCSObjectsWithPrefixExistenceSensor¶
Use the GCSObjectsWithPrefixExistenceSensor
to wait (poll) for the existence of a file with a specified prefix in Google Cloud Storage.
gcs_object_with_prefix_exists = GCSObjectsWithPrefixExistenceSensor(
bucket=BUCKET_NAME,
prefix=FILE_NAME[:5],
task_id="gcs_object_with_prefix_exists_task",
)
GCSUploadSessionCompleteSensor¶
Use the GCSUploadSessionCompleteSensor
to check for a change in the number of files with a specified prefix in Google Cloud Storage.
gcs_upload_session_complete = GCSUploadSessionCompleteSensor(
bucket=BUCKET_NAME,
prefix=FILE_NAME,
inactivity_period=15,
min_objects=1,
allow_delete=True,
previous_objects=set(),
task_id="gcs_upload_session_complete_task",
)
GCSObjectUpdateSensor¶
Use the GCSObjectUpdateSensor
to check if an object is updated in Google Cloud Storage.
gcs_update_object_exists = GCSObjectUpdateSensor(
bucket=BUCKET_NAME,
object=FILE_NAME,
task_id="gcs_object_update_sensor_task",
)
More information¶
Sensors have different modes that determine the behaviour of resources while the task is executing. See Airflow sensors documentation for best practices when using sensors.