#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google BigQuery service testing tables.
"""
import os
import time
from datetime import datetime
from pathlib import Path
from airflow import models
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateEmptyTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryDeleteTableOperator,
BigQueryGetDatasetTablesOperator,
BigQueryUpdateDatasetOperator,
BigQueryUpdateTableOperator,
BigQueryUpdateTableSchemaOperator,
BigQueryUpsertTableOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.transfers.local_to_gcs import LocalFilesystemToGCSOperator
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "bigquery_tables"
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}"
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT")
[docs]SCHEMA_JSON_LOCAL_SRC = str(Path(__file__).parent / "resources" / "update_table_schema.json")
[docs]SCHEMA_JSON_DESTINATION = "update_table_schema.json"
[docs]GCS_PATH_TO_SCHEMA_JSON = f"gs://{BUCKET_NAME}/{SCHEMA_JSON_DESTINATION}"
with models.DAG(
DAG_ID,
schedule_interval="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "bigquery"],
) as dag:
[docs] create_bucket = GCSCreateBucketOperator(
task_id="create_bucket", bucket_name=BUCKET_NAME, project_id=PROJECT_ID
)
upload_schema_json = LocalFilesystemToGCSOperator(
task_id="upload_schema_json",
src=SCHEMA_JSON_LOCAL_SRC,
dst=SCHEMA_JSON_DESTINATION,
bucket=BUCKET_NAME,
)
create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create_dataset", dataset_id=DATASET_NAME)
# [START howto_operator_bigquery_create_table]
create_table = BigQueryCreateEmptyTableOperator(
task_id="create_table",
dataset_id=DATASET_NAME,
table_id="test_table",
schema_fields=[
{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"},
{"name": "salary", "type": "INTEGER", "mode": "NULLABLE"},
],
)
# [END howto_operator_bigquery_create_table]
# [START howto_operator_bigquery_create_view]
create_view = BigQueryCreateEmptyTableOperator(
task_id="create_view",
dataset_id=DATASET_NAME,
table_id="test_view",
view={
"query": f"SELECT * FROM `{PROJECT_ID}.{DATASET_NAME}.test_table`",
"useLegacySql": False,
},
)
# [END howto_operator_bigquery_create_view]
# [START howto_operator_bigquery_create_materialized_view]
create_materialized_view = BigQueryCreateEmptyTableOperator(
task_id="create_materialized_view",
dataset_id=DATASET_NAME,
table_id="test_materialized_view",
materialized_view={
"query": f"SELECT SUM(salary) AS sum_salary FROM `{PROJECT_ID}.{DATASET_NAME}.test_table`",
"enableRefresh": True,
"refreshIntervalMs": 2000000,
},
)
# [END howto_operator_bigquery_create_materialized_view]
# [START howto_operator_bigquery_delete_view]
delete_view = BigQueryDeleteTableOperator(
task_id="delete_view",
deletion_dataset_table=f"{PROJECT_ID}.{DATASET_NAME}.test_view",
)
# [END howto_operator_bigquery_delete_view]
# [START howto_operator_bigquery_update_table]
update_table = BigQueryUpdateTableOperator(
task_id="update_table",
dataset_id=DATASET_NAME,
table_id="test_table",
fields=["friendlyName", "description"],
table_resource={
"friendlyName": "Updated Table",
"description": "Updated Table",
},
)
# [END howto_operator_bigquery_update_table]
# [START howto_operator_bigquery_upsert_table]
upsert_table = BigQueryUpsertTableOperator(
task_id="upsert_table",
dataset_id=DATASET_NAME,
table_resource={
"tableReference": {"tableId": "test_table_id"},
"expirationTime": (int(time.time()) + 300) * 1000,
},
)
# [END howto_operator_bigquery_upsert_table]
# [START howto_operator_bigquery_update_table_schema]
update_table_schema = BigQueryUpdateTableSchemaOperator(
task_id="update_table_schema",
dataset_id=DATASET_NAME,
table_id="test_table",
schema_fields_updates=[
{"name": "emp_name", "description": "Name of employee"},
{"name": "salary", "description": "Monthly salary in USD"},
],
)
# [END howto_operator_bigquery_update_table_schema]
# [START howto_operator_bigquery_create_table_schema_json]
update_table_schema_json = BigQueryCreateEmptyTableOperator(
task_id="update_table_schema_json",
dataset_id=DATASET_NAME,
table_id="test_table",
gcs_schema_object=GCS_PATH_TO_SCHEMA_JSON,
)
# [END howto_operator_bigquery_create_table_schema_json]
# [START howto_operator_bigquery_delete_materialized_view]
delete_materialized_view = BigQueryDeleteTableOperator(
task_id="delete_materialized_view",
deletion_dataset_table=f"{PROJECT_ID}.{DATASET_NAME}.test_materialized_view",
)
# [END howto_operator_bigquery_delete_materialized_view]
# [START howto_operator_bigquery_get_dataset_tables]
get_dataset_tables = BigQueryGetDatasetTablesOperator(
task_id="get_dataset_tables", dataset_id=DATASET_NAME
)
# [END howto_operator_bigquery_get_dataset_tables]
update_dataset = BigQueryUpdateDatasetOperator(
task_id="update_dataset",
dataset_id=DATASET_NAME,
dataset_resource={"description": "Updated dataset"},
)
# [START howto_operator_bigquery_delete_table]
delete_table = BigQueryDeleteTableOperator(
task_id="delete_table",
deletion_dataset_table=f"{PROJECT_ID}.{DATASET_NAME}.test_table",
)
# [END howto_operator_bigquery_delete_table]
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset", dataset_id=DATASET_NAME, delete_contents=True
)
delete_dataset.trigger_rule = TriggerRule.ALL_DONE
delete_bucket = GCSDeleteBucketOperator(
task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE
)
(
# TEST SETUP
create_bucket
>> create_dataset
>> upload_schema_json
# TEST BODY
>> update_dataset
>> create_table
>> create_view
>> create_materialized_view
>> [
get_dataset_tables,
delete_view,
]
>> update_table
>> upsert_table
>> update_table_schema
>> update_table_schema_json
>> delete_materialized_view
>> delete_table
# TEST TEARDOWN
>> delete_bucket
>> delete_dataset
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)