Source code for airflow.providers.google.cloud.transfers.bigquery_to_mysql

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Google BigQuery to MySQL operator."""
from typing import TYPE_CHECKING, List, Optional, Sequence, Union

from airflow.models import BaseOperator
from airflow.providers.google.cloud.hooks.bigquery import BigQueryHook
from airflow.providers.google.cloud.utils.bigquery_get_data import bigquery_get_data
from airflow.providers.mysql.hooks.mysql import MySqlHook

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class BigQueryToMySqlOperator(BaseOperator): """ Fetches the data from a BigQuery table (alternatively fetch data for selected columns) and insert that data into a MySQL table. .. note:: If you pass fields to ``selected_fields`` which are in different order than the order of columns already in BQ table, the data will still be in the order of BQ table. For example if the BQ table has 3 columns as ``[A,B,C]`` and you pass 'B,A' in the ``selected_fields`` the data would still be of the form ``'A,B'`` and passed through this form to MySQL **Example**: :: transfer_data = BigQueryToMySqlOperator( task_id='task_id', dataset_table='origin_bq_table', mysql_table='dest_table_name', replace=True, ) :param dataset_table: A dotted ``<dataset>.<table>``: the big query table of origin :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param gcp_conn_id: reference to a specific Google Cloud hook. :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :param mysql_conn_id: Reference to :ref:`mysql connection id <howto/connection:mysql>`. :param database: name of database which overwrite defined one in connection :param replace: Whether to replace instead of insert :param batch_size: The number of rows to take in each batch :param location: The location used for the operation. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """
[docs] template_fields: Sequence[str] = ( 'dataset_id', 'table_id', 'mysql_table', 'impersonation_chain',
) def __init__( self, *, dataset_table: str, mysql_table: str, selected_fields: Optional[Union[List[str], str]] = None, gcp_conn_id: str = 'google_cloud_default', mysql_conn_id: str = 'mysql_default', database: Optional[str] = None, delegate_to: Optional[str] = None, replace: bool = False, batch_size: int = 1000, location: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.selected_fields = selected_fields self.gcp_conn_id = gcp_conn_id self.mysql_conn_id = mysql_conn_id self.database = database self.mysql_table = mysql_table self.replace = replace self.delegate_to = delegate_to self.batch_size = batch_size self.location = location self.impersonation_chain = impersonation_chain try: self.dataset_id, self.table_id = dataset_table.split('.') except ValueError: raise ValueError(f'Could not parse {dataset_table} as <dataset>.<table>') from None
[docs] def execute(self, context: 'Context') -> None: big_query_hook = BigQueryHook( gcp_conn_id=self.gcp_conn_id, delegate_to=self.delegate_to, location=self.location, impersonation_chain=self.impersonation_chain, ) mysql_hook = MySqlHook(schema=self.database, mysql_conn_id=self.mysql_conn_id) for rows in bigquery_get_data( self.log, self.dataset_id, self.table_id, big_query_hook, self.batch_size, self.selected_fields, ): mysql_hook.insert_rows( table=self.mysql_table, rows=rows, target_fields=self.selected_fields, replace=self.replace,
)

Was this entry helpful?