Source code for airflow.providers.google.cloud.example_dags.example_datafusion

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Example Airflow DAG that shows how to use DataFusion.
"""
import os
from datetime import datetime

from airflow import models
from airflow.operators.bash import BashOperator
from airflow.providers.google.cloud.operators.datafusion import (
    CloudDataFusionCreateInstanceOperator,
    CloudDataFusionCreatePipelineOperator,
    CloudDataFusionDeleteInstanceOperator,
    CloudDataFusionDeletePipelineOperator,
    CloudDataFusionGetInstanceOperator,
    CloudDataFusionListPipelinesOperator,
    CloudDataFusionRestartInstanceOperator,
    CloudDataFusionStartPipelineOperator,
    CloudDataFusionStopPipelineOperator,
    CloudDataFusionUpdateInstanceOperator,
)
from airflow.providers.google.cloud.sensors.datafusion import CloudDataFusionPipelineStateSensor

# [START howto_data_fusion_env_variables]
[docs]SERVICE_ACCOUNT = os.environ.get("GCP_DATAFUSION_SERVICE_ACCOUNT")
[docs]LOCATION = "europe-north1"
[docs]INSTANCE_NAME = "airflow-test-instance"
[docs]INSTANCE = { "type": "BASIC", "displayName": INSTANCE_NAME, "dataprocServiceAccount": SERVICE_ACCOUNT,
}
[docs]BUCKET_1 = os.environ.get("GCP_DATAFUSION_BUCKET_1", "test-datafusion-bucket-1")
[docs]BUCKET_2 = os.environ.get("GCP_DATAFUSION_BUCKET_2", "test-datafusion-bucket-2")
[docs]BUCKET_1_URI = f"gs://{BUCKET_1}"
[docs]BUCKET_2_URI = f"gs://{BUCKET_2}"
[docs]PIPELINE_NAME = os.environ.get("GCP_DATAFUSION_PIPELINE_NAME", "airflow_test")
[docs]PIPELINE = { "artifact": { "name": "cdap-data-pipeline", "version": "6.5.1", "scope": "SYSTEM", "label": "Data Pipeline - System Test", }, "description": "Data Pipeline Application", "name": "test-pipe", "config": { "resources": {"memoryMB": 2048, "virtualCores": 1}, "driverResources": {"memoryMB": 2048, "virtualCores": 1}, "connections": [{"from": "GCS", "to": "GCS2"}], "comments": [], "postActions": [], "properties": {}, "processTimingEnabled": "true", "stageLoggingEnabled": "false", "stages": [ { "name": "GCS", "plugin": { "name": "GCSFile", "type": "batchsource", "label": "GCS", "artifact": {"name": "google-cloud", "version": "0.18.1", "scope": "SYSTEM"}, "properties": { "project": "auto-detect", "format": "text", "skipHeader": "false", "serviceFilePath": "auto-detect", "filenameOnly": "false", "recursive": "false", "encrypted": "false", "schema": "{\"type\":\"record\",\"name\":\"textfile\",\"fields\":[{\"name\"\ :\"offset\",\"type\":\"long\"},{\"name\":\"body\",\"type\":\"string\"}]}", "path": BUCKET_1_URI, "referenceName": "foo_bucket", "useConnection": "false", "serviceAccountType": "filePath", "sampleSize": "1000", "fileEncoding": "UTF-8", }, }, "outputSchema": "{\"type\":\"record\",\"name\":\"textfile\",\"fields\"\ :[{\"name\":\"offset\",\"type\":\"long\"},{\"name\":\"body\",\"type\":\"string\"}]}", "id": "GCS", }, { "name": "GCS2", "plugin": { "name": "GCS", "type": "batchsink", "label": "GCS2", "artifact": {"name": "google-cloud", "version": "0.18.1", "scope": "SYSTEM"}, "properties": { "project": "auto-detect", "suffix": "yyyy-MM-dd-HH-mm", "format": "json", "serviceFilePath": "auto-detect", "location": "us", "schema": "{\"type\":\"record\",\"name\":\"textfile\",\"fields\":[{\"name\"\ :\"offset\",\"type\":\"long\"},{\"name\":\"body\",\"type\":\"string\"}]}", "referenceName": "bar", "path": BUCKET_2_URI, "serviceAccountType": "filePath", "contentType": "application/octet-stream", }, }, "outputSchema": "{\"type\":\"record\",\"name\":\"textfile\",\"fields\"\ :[{\"name\":\"offset\",\"type\":\"long\"},{\"name\":\"body\",\"type\":\"string\"}]}", "inputSchema": [ { "name": "GCS", "schema": "{\"type\":\"record\",\"name\":\"textfile\",\"fields\":[{\"name\"\ :\"offset\",\"type\":\"long\"},{\"name\":\"body\",\"type\":\"string\"}]}", } ], "id": "GCS2", }, ], "schedule": "0 * * * *", "engine": "spark", "numOfRecordsPreview": 100, "description": "Data Pipeline Application", "maxConcurrentRuns": 1,
}, } # [END howto_data_fusion_env_variables] with models.DAG( "example_data_fusion", schedule_interval='@once', # Override to match your needs start_date=datetime(2021, 1, 1), catchup=False, ) as dag: # [START howto_cloud_data_fusion_create_instance_operator]
[docs] create_instance = CloudDataFusionCreateInstanceOperator( location=LOCATION, instance_name=INSTANCE_NAME, instance=INSTANCE, task_id="create_instance",
) # [END howto_cloud_data_fusion_create_instance_operator] # [START howto_cloud_data_fusion_get_instance_operator] get_instance = CloudDataFusionGetInstanceOperator( location=LOCATION, instance_name=INSTANCE_NAME, task_id="get_instance" ) # [END howto_cloud_data_fusion_get_instance_operator] # [START howto_cloud_data_fusion_restart_instance_operator] restart_instance = CloudDataFusionRestartInstanceOperator( location=LOCATION, instance_name=INSTANCE_NAME, task_id="restart_instance" ) # [END howto_cloud_data_fusion_restart_instance_operator] # [START howto_cloud_data_fusion_update_instance_operator] update_instance = CloudDataFusionUpdateInstanceOperator( location=LOCATION, instance_name=INSTANCE_NAME, instance=INSTANCE, update_mask="", task_id="update_instance", ) # [END howto_cloud_data_fusion_update_instance_operator] # [START howto_cloud_data_fusion_create_pipeline] create_pipeline = CloudDataFusionCreatePipelineOperator( location=LOCATION, pipeline_name=PIPELINE_NAME, pipeline=PIPELINE, instance_name=INSTANCE_NAME, task_id="create_pipeline", ) # [END howto_cloud_data_fusion_create_pipeline] # [START howto_cloud_data_fusion_list_pipelines] list_pipelines = CloudDataFusionListPipelinesOperator( location=LOCATION, instance_name=INSTANCE_NAME, task_id="list_pipelines" ) # [END howto_cloud_data_fusion_list_pipelines] # [START howto_cloud_data_fusion_start_pipeline] start_pipeline = CloudDataFusionStartPipelineOperator( location=LOCATION, pipeline_name=PIPELINE_NAME, instance_name=INSTANCE_NAME, task_id="start_pipeline", ) # [END howto_cloud_data_fusion_start_pipeline] # [START howto_cloud_data_fusion_start_pipeline_async] start_pipeline_async = CloudDataFusionStartPipelineOperator( location=LOCATION, pipeline_name=PIPELINE_NAME, instance_name=INSTANCE_NAME, asynchronous=True, task_id="start_pipeline_async", ) # [END howto_cloud_data_fusion_start_pipeline_async] # [START howto_cloud_data_fusion_start_pipeline_sensor] start_pipeline_sensor = CloudDataFusionPipelineStateSensor( task_id="pipeline_state_sensor", pipeline_name=PIPELINE_NAME, pipeline_id=start_pipeline_async.output, expected_statuses=["COMPLETED"], failure_statuses=["FAILED"], instance_name=INSTANCE_NAME, location=LOCATION, ) # [END howto_cloud_data_fusion_start_pipeline_sensor] # [START howto_cloud_data_fusion_stop_pipeline] stop_pipeline = CloudDataFusionStopPipelineOperator( location=LOCATION, pipeline_name=PIPELINE_NAME, instance_name=INSTANCE_NAME, task_id="stop_pipeline", ) # [END howto_cloud_data_fusion_stop_pipeline] # [START howto_cloud_data_fusion_delete_pipeline] delete_pipeline = CloudDataFusionDeletePipelineOperator( location=LOCATION, pipeline_name=PIPELINE_NAME, instance_name=INSTANCE_NAME, task_id="delete_pipeline", ) # [END howto_cloud_data_fusion_delete_pipeline] # [START howto_cloud_data_fusion_delete_instance_operator] delete_instance = CloudDataFusionDeleteInstanceOperator( location=LOCATION, instance_name=INSTANCE_NAME, task_id="delete_instance" ) # [END howto_cloud_data_fusion_delete_instance_operator] # Add sleep before creating pipeline sleep = BashOperator(task_id="sleep", bash_command="sleep 60") create_instance >> get_instance >> restart_instance >> update_instance >> sleep ( sleep >> create_pipeline >> list_pipelines >> start_pipeline_async >> start_pipeline_sensor >> start_pipeline >> stop_pipeline >> delete_pipeline ) delete_pipeline >> delete_instance if __name__ == "__main__": dag.clear() dag.run()

Was this entry helpful?