airflow.providers.google.cloud.triggers.bigquery

Module Contents

Classes

BigQueryInsertJobTrigger

BigQueryInsertJobTrigger run on the trigger worker to perform insert operation

BigQueryCheckTrigger

BigQueryCheckTrigger run on the trigger worker

BigQueryGetDataTrigger

BigQueryGetDataTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class

BigQueryIntervalCheckTrigger

BigQueryIntervalCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class

BigQueryValueCheckTrigger

BigQueryValueCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class

BigQueryTableExistenceTrigger

Initialize the BigQuery Table Existence Trigger with needed parameters

BigQueryTablePartitionExistenceTrigger

Initialize the BigQuery Table Partition Existence Trigger with needed parameters

class airflow.providers.google.cloud.triggers.bigquery.BigQueryInsertJobTrigger(conn_id, job_id, project_id, dataset_id=None, table_id=None, poll_interval=4.0)[source]

Bases: airflow.triggers.base.BaseTrigger

BigQueryInsertJobTrigger run on the trigger worker to perform insert operation

Parameters
  • conn_id (str) – Reference to google cloud connection id

  • job_id (str | None) – The ID of the job. It will be suffixed with hash of job configuration

  • project_id (str | None) – Google Cloud Project where the job is running

  • dataset_id (str | None) – The dataset ID of the requested table. (templated)

  • table_id (str | None) – The table ID of the requested table. (templated)

  • poll_interval (float) – polling period in seconds to check for the status

serialize()[source]

Serializes BigQueryInsertJobTrigger arguments and classpath.

async run()[source]

Gets current job execution status and yields a TriggerEvent

class airflow.providers.google.cloud.triggers.bigquery.BigQueryCheckTrigger(conn_id, job_id, project_id, dataset_id=None, table_id=None, poll_interval=4.0)[source]

Bases: BigQueryInsertJobTrigger

BigQueryCheckTrigger run on the trigger worker

serialize()[source]

Serializes BigQueryCheckTrigger arguments and classpath.

async run()[source]

Gets current job execution status and yields a TriggerEvent

class airflow.providers.google.cloud.triggers.bigquery.BigQueryGetDataTrigger(conn_id, job_id, project_id, dataset_id=None, table_id=None, poll_interval=4.0)[source]

Bases: BigQueryInsertJobTrigger

BigQueryGetDataTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class

serialize()[source]

Serializes BigQueryInsertJobTrigger arguments and classpath.

async run()[source]

Gets current job execution status and yields a TriggerEvent with response data

class airflow.providers.google.cloud.triggers.bigquery.BigQueryIntervalCheckTrigger(conn_id, first_job_id, second_job_id, project_id, table, metrics_thresholds, date_filter_column='ds', days_back=-7, ratio_formula='max_over_min', ignore_zero=True, dataset_id=None, table_id=None, poll_interval=4.0)[source]

Bases: BigQueryInsertJobTrigger

BigQueryIntervalCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class

Parameters
  • conn_id (str) – Reference to google cloud connection id

  • first_job_id (str) – The ID of the job 1 performed

  • second_job_id (str) – The ID of the job 2 performed

  • project_id (str | None) – Google Cloud Project where the job is running

  • dataset_id (str | None) – The dataset ID of the requested table. (templated)

  • table (str) – table name

  • metrics_thresholds (dict[str, int]) – dictionary of ratios indexed by metrics

  • date_filter_column (str | None) – column name

  • days_back (SupportsAbs[int]) – number of days between ds and the ds we want to check against

  • ratio_formula (str) – ration formula

  • ignore_zero (bool) – boolean value to consider zero or not

  • table_id (str | None) – The table ID of the requested table. (templated)

  • poll_interval (float) – polling period in seconds to check for the status

serialize()[source]

Serializes BigQueryCheckTrigger arguments and classpath.

async run()[source]

Gets current job execution status and yields a TriggerEvent

class airflow.providers.google.cloud.triggers.bigquery.BigQueryValueCheckTrigger(conn_id, sql, pass_value, job_id, project_id, tolerance=None, dataset_id=None, table_id=None, poll_interval=4.0)[source]

Bases: BigQueryInsertJobTrigger

BigQueryValueCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class

Parameters
  • conn_id (str) – Reference to google cloud connection id

  • sql (str) – the sql to be executed

  • pass_value (int | float | str) – pass value

  • job_id (str | None) – The ID of the job

  • project_id (str | None) – Google Cloud Project where the job is running

  • tolerance (Any) – certain metrics for tolerance

  • dataset_id (str | None) – The dataset ID of the requested table. (templated)

  • table_id (str | None) – The table ID of the requested table. (templated)

  • poll_interval (float) – polling period in seconds to check for the status

serialize()[source]

Serializes BigQueryValueCheckTrigger arguments and classpath.

async run()[source]

Gets current job execution status and yields a TriggerEvent

class airflow.providers.google.cloud.triggers.bigquery.BigQueryTableExistenceTrigger(project_id, dataset_id, table_id, gcp_conn_id, hook_params, poll_interval=4.0)[source]

Bases: airflow.triggers.base.BaseTrigger

Initialize the BigQuery Table Existence Trigger with needed parameters

Parameters
  • project_id (str) – Google Cloud Project where the job is running

  • dataset_id (str) – The dataset ID of the requested table.

  • table_id (str) – The table ID of the requested table.

  • gcp_conn_id (str) – Reference to google cloud connection id

  • hook_params (dict[str, Any]) – params for hook

  • poll_interval (float) – polling period in seconds to check for the status

serialize()[source]

Serializes BigQueryTableExistenceTrigger arguments and classpath.

async run()[source]

Will run until the table exists in the Google Big Query.

class airflow.providers.google.cloud.triggers.bigquery.BigQueryTablePartitionExistenceTrigger(partition_id, **kwargs)[source]

Bases: BigQueryTableExistenceTrigger

Initialize the BigQuery Table Partition Existence Trigger with needed parameters :param partition_id: The name of the partition to check the existence of. :param project_id: Google Cloud Project where the job is running :param dataset_id: The dataset ID of the requested table. :param table_id: The table ID of the requested table. :param gcp_conn_id: Reference to google cloud connection id :param hook_params: params for hook :param poll_interval: polling period in seconds to check for the status

serialize()[source]

Serializes BigQueryTablePartitionExistenceTrigger arguments and classpath.

async run()[source]

Will run until the table exists in the Google Big Query.

Was this entry helpful?