Source code for airflow.providers.google.cloud.example_dags.example_life_sciences

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import os
from datetime import datetime

from airflow import models
from airflow.providers.google.cloud.operators.life_sciences import LifeSciencesRunPipelineOperator

[docs]PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project-id")
[docs]BUCKET = os.environ.get("GCP_GCS_LIFE_SCIENCES_BUCKET", "INVALID BUCKET NAME")
[docs]FILENAME = os.environ.get("GCP_GCS_LIFE_SCIENCES_FILENAME", 'input.in')
[docs]LOCATION = os.environ.get("GCP_LIFE_SCIENCES_LOCATION", 'us-central1')
# [START howto_configure_simple_action_pipeline]
[docs]SIMPLE_ACTION_PIPELINE = { "pipeline": { "actions": [ {"imageUri": "bash", "commands": ["-c", "echo Hello, world"]}, ], "resources": { "regions": [f"{LOCATION}"], "virtualMachine": { "machineType": "n1-standard-1",
}, }, }, } # [END howto_configure_simple_action_pipeline] # [START howto_configure_multiple_action_pipeline]
[docs]MULTI_ACTION_PIPELINE = { "pipeline": { "actions": [ { "imageUri": "google/cloud-sdk", "commands": ["gsutil", "cp", f"gs://{BUCKET}/{FILENAME}", "/tmp"], }, {"imageUri": "bash", "commands": ["-c", "echo Hello, world"]}, { "imageUri": "google/cloud-sdk", "commands": [ "gsutil", "cp", f"gs://{BUCKET}/{FILENAME}", f"gs://{BUCKET}/output.in", ], }, ], "resources": { "regions": [f"{LOCATION}"], "virtualMachine": { "machineType": "n1-standard-1",
}, }, } } # [END howto_configure_multiple_action_pipeline] with models.DAG( "example_gcp_life_sciences", schedule_interval='@once', start_date=datetime(2021, 1, 1), catchup=False, tags=['example'], ) as dag: # [START howto_run_pipeline]
[docs] simple_life_science_action_pipeline = LifeSciencesRunPipelineOperator( task_id='simple-action-pipeline', body=SIMPLE_ACTION_PIPELINE, project_id=PROJECT_ID, location=LOCATION,
) # [END howto_run_pipeline] multiple_life_science_action_pipeline = LifeSciencesRunPipelineOperator( task_id='multi-action-pipeline', body=MULTI_ACTION_PIPELINE, project_id=PROJECT_ID, location=LOCATION ) simple_life_science_action_pipeline >> multiple_life_science_action_pipeline

Was this entry helpful?