Google Cloud Vision Operators

Prerequisite Tasks

CloudVisionAddProductToProductSetOperator

Creates a new ReferenceImage resource.

For parameter definition, take a look at CloudVisionAddProductToProductSetOperator

Using the operator

We are using the Product, ProductSet and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import ProductSet  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import Product  # isort:skip

If product_set_id and product_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

add_product_to_product_set = CloudVisionAddProductToProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=product_set_create_output,
    product_id=product_create_output,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='add_product_to_product_set',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

add_product_to_product_set_2 = CloudVisionAddProductToProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=GCP_VISION_PRODUCT_SET_ID,
    product_id=GCP_VISION_PRODUCT_ID,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='add_product_to_product_set_2',
)

Templating

template_fields: Sequence[str] = (
    "location",
    "product_set_id",
    "product_id",
    "project_id",
    "gcp_conn_id",
    "impersonation_chain",
)

CloudVisionImageAnnotateOperator

Run image detection and annotation for an image.

For parameter definition, take a look at CloudVisionImageAnnotateOperator

Using the operator

We are using the enums and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision import enums  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

annotate_image = CloudVisionImageAnnotateOperator(
    request=annotate_image_request, retry=Retry(maximum=10.0), timeout=5, task_id='annotate_image'
)

The result can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

annotate_image_result = BashOperator(
    bash_command="echo {{ task_instance.xcom_pull('annotate_image')"
    "['logoAnnotations'][0]['description'] }}",
    task_id='annotate_image_result',
)

Templating

template_fields: Sequence[str] = (
    'request',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionCreateProductOperator

Creates and returns a new product resource.

Possible errors regarding the Product object provided:

  • Returns INVALID_ARGUMENT if display_name is missing or longer than 4096 characters.

  • Returns INVALID_ARGUMENT if description is longer than 4096 characters.

  • Returns INVALID_ARGUMENT if product_category is missing or invalid.

For parameter definition, take a look at CloudVisionCreateProductOperator

Using the operator

We are using the Product and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import Product  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product = Product(display_name='My Product 1', product_category='toys')

The product_id argument can be omitted (it will be generated by the API):

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_create = CloudVisionCreateProductOperator(
    location=GCP_VISION_LOCATION,
    product=product,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='product_create',
)

Or it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_create_2 = CloudVisionCreateProductOperator(
    product_id=GCP_VISION_PRODUCT_ID,
    location=GCP_VISION_LOCATION,
    product=product,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='product_create_2',
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionDeleteProductOperator

Permanently deletes a product and its reference images.

Metadata of the product and all its images will be deleted right away, but search queries against ProductSets containing the product may still work until all related caches are refreshed.

Possible errors:

  • Returns NOT_FOUND if the product does not exist.

For parameter definition, take a look at CloudVisionDeleteProductOperator

Using the operator

If product_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_delete = CloudVisionDeleteProductOperator(
    location=GCP_VISION_LOCATION,
    product_id=product_create_output,
    task_id='product_delete',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_delete_2 = CloudVisionDeleteProductOperator(
    location=GCP_VISION_LOCATION, product_id=GCP_VISION_PRODUCT_ID, task_id='product_delete_2'
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionGetProductOperator

Gets information associated with a Product.

Possible errors:

  • Returns NOT_FOUND if the Product does not exist.

For parameter definition, take a look at CloudVisionGetProductOperator

Using the operator

If product_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_get = CloudVisionGetProductOperator(
    location=GCP_VISION_LOCATION,
    product_id=product_create_output,
    task_id='product_get',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_get_2 = CloudVisionGetProductOperator(
    location=GCP_VISION_LOCATION, product_id=GCP_VISION_PRODUCT_ID, task_id='product_get_2'
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionProductSetCreateOperator

Creates a new ProductSet resource.

For parameter definition, take a look at CloudVisionCreateProductSetOperator

Using the operator

We are using the ProductSet and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import ProductSet  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set = ProductSet(display_name='My Product Set')

The product_set_id argument can be omitted (it will be generated by the API):

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_create = CloudVisionCreateProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set=product_set,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='product_set_create',
)

Or it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_create_2 = CloudVisionCreateProductSetOperator(
    product_set_id=GCP_VISION_PRODUCT_SET_ID,
    location=GCP_VISION_LOCATION,
    product_set=product_set,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='product_set_create_2',
)

Templating

template_fields: Sequence[str] = (
    "location",
    "project_id",
    "product_set_id",
    "gcp_conn_id",
    "impersonation_chain",
)

CloudVisionDeleteProductSetOperator

Permanently deletes a ProductSet. Products and ReferenceImages in the ProductSet are not deleted. The actual image files are not deleted from Google Cloud Storage.

For parameter definition, take a look at CloudVisionDeleteProductSetOperator

Using the operator

If product_set_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_delete = CloudVisionDeleteProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=product_set_create_output,
    task_id='product_set_delete',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_delete_2 = CloudVisionDeleteProductSetOperator(
    location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, task_id='product_set_delete_2'
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_set_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionGetProductSetOperator

Gets information associated with a ProductSet.

For parameter definition, take a look at CloudVisionGetProductSetOperator

Using the operator

If product_set_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_get = CloudVisionGetProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=product_set_create_output,
    task_id='product_set_get',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_get_2 = CloudVisionGetProductSetOperator(
    location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, task_id='product_set_get_2'
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_set_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionUpdateProductSetOperator

Makes changes to a ProductSet resource. Only display_name can be updated currently.

Note

To locate the ProductSet resource, its name in the form projects/PROJECT_ID/locations/LOC_ID/productSets/PRODUCT_SET_ID is necessary.

You can provide the name directly as an attribute of the product_set object. However, you can leave it blank and provide location and product_set_id instead (and optionally project_id - if not present, the connection default will be used) and the name will be created by the operator itself.

This mechanism exists for your convenience, to allow leaving the project_id empty and having Airflow use the connection default project_id.

For parameter definition, take a look at CloudVisionUpdateProductSetOperator

Using the operator

We are using the ProductSet object from the Google Cloud Vision library:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import ProductSet  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set = ProductSet(display_name='My Product Set')

Initialization of the task:

If product_set_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_update = CloudVisionUpdateProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=product_set_create_output,
    product_set=ProductSet(display_name='My Product Set 2'),
    task_id='product_set_update',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_set_update_2 = CloudVisionUpdateProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=GCP_VISION_PRODUCT_SET_ID,
    product_set=ProductSet(display_name='My Product Set 2'),
    task_id='product_set_update_2',
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_set_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionUpdateProductOperator

Makes changes to a Product resource. Only the display_name, description, and labels fields can be updated right now. If labels are updated, the change will not be reflected in queries until the next index time.

Note

To locate the Product resource, its name in the form projects/PROJECT_ID/locations/LOC_ID/products/PRODUCT_ID is necessary.

You can provide the name directly as an attribute of the product object. However, you can leave it blank and provide location and product_id instead (and optionally project_id - if not present, the connection default will be used) and the name will be created by the operator itself.

This mechanism exists for your convenience, to allow leaving the project_id empty and having Airflow use the connection default project_id.

Possible errors:

  • Returns NOT_FOUND if the Product does not exist.

  • Returns INVALID_ARGUMENT if display_name is present in update_mask but is missing from the request or longer than 4096 characters.

  • Returns INVALID_ARGUMENT if description is present in update_mask but is longer than 4096 characters.

  • Returns INVALID_ARGUMENT if product_category is present in update_mask.

For parameter definition, take a look at CloudVisionUpdateProductOperator

Using the operator

We are using the Product object from the Google Cloud Vision library:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import Product  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product = Product(display_name='My Product 1', product_category='toys')

If product_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_update = CloudVisionUpdateProductOperator(
    location=GCP_VISION_LOCATION,
    product_id=product_create_output,
    product=Product(display_name='My Product 2', description='My updated description'),
    task_id='product_update',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

product_update_2 = CloudVisionUpdateProductOperator(
    location=GCP_VISION_LOCATION,
    product_id=GCP_VISION_PRODUCT_ID,
    product=Product(display_name='My Product 2', description='My updated description'),
    task_id='product_update_2',
)

Templating

template_fields: Sequence[str] = (
    'location',
    'project_id',
    'product_id',
    'gcp_conn_id',
    'impersonation_chain',
)

CloudVisionCreateReferenceImageOperator

Creates a new ReferenceImage resource.

For parameter definition, take a look at CloudVisionCreateReferenceImageOperator

Using the operator

We are using the ReferenceImage and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import ReferenceImage  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

reference_image = ReferenceImage(uri=GCP_VISION_REFERENCE_IMAGE_URL)

The product_set_id argument can be omitted (it will be generated by the API):

airflow/providers/google/cloud/example_dags/example_vision.py[source]

reference_image_create = CloudVisionCreateReferenceImageOperator(
    location=GCP_VISION_LOCATION,
    reference_image=reference_image,
    product_id=product_create_output,
    reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='reference_image_create',
)

Or it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

reference_image_create_2 = CloudVisionCreateReferenceImageOperator(
    location=GCP_VISION_LOCATION,
    reference_image=reference_image,
    product_id=GCP_VISION_PRODUCT_ID,
    reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='reference_image_create_2',
)

Templating

template_fields: Sequence[str] = (
    "location",
    "reference_image",
    "product_id",
    "reference_image_id",
    "project_id",
    "gcp_conn_id",
    "impersonation_chain",
)

CloudVisionDeleteReferenceImageOperator

Deletes a ReferenceImage resource.

For parameter definition, take a look at CloudVisionDeleteReferenceImageOperator

Using the operator

We are using the ReferenceImage and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import ReferenceImage  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

reference_image = ReferenceImage(uri=GCP_VISION_REFERENCE_IMAGE_URL)

The product_set_id argument can be omitted (it will be generated by the API):

airflow/providers/google/cloud/example_dags/example_vision.py[source]

reference_image_delete = CloudVisionDeleteReferenceImageOperator(
    location=GCP_VISION_LOCATION,
    product_id=product_create_output,
    reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='reference_image_delete',
)

Or it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

reference_image_delete_2 = CloudVisionDeleteReferenceImageOperator(
    location=GCP_VISION_LOCATION,
    reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID,
    product_id=GCP_VISION_PRODUCT_ID,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='reference_image_delete_2',
)

Templating

template_fields: Sequence[str] = (
    "location",
    "reference_image",
    "product_id",
    "reference_image_id",
    "project_id",
    "gcp_conn_id",
    "impersonation_chain",
)

CloudVisionRemoveProductFromProductSetOperator

Creates a new ReferenceImage resource.

For parameter definition, take a look at CloudVisionRemoveProductFromProductSetOperator

Using the operator

We are using the Product, ProductSet and Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import ProductSet  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.cloud.vision_v1.types import Product  # isort:skip

If product_set_id and product_id was generated by the API it can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

remove_product_from_product_set = CloudVisionRemoveProductFromProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=product_set_create_output,
    product_id=product_create_output,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='remove_product_from_product_set',
)

Otherwise it can be specified explicitly:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

remove_product_from_product_set_2 = CloudVisionRemoveProductFromProductSetOperator(
    location=GCP_VISION_LOCATION,
    product_set_id=GCP_VISION_PRODUCT_SET_ID,
    product_id=GCP_VISION_PRODUCT_ID,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id='remove_product_from_product_set_2',
)

Templating

template_fields: Sequence[str] = (
    "location",
    "product_set_id",
    "product_id",
    "project_id",
    "gcp_conn_id",
    "impersonation_chain",
)

More information

See Google Cloud Vision Remove Product From Product Set documentation.

CloudVisionDetectTextOperator

Run text detection for an image.

For parameter definition, take a look at CloudVisionDetectTextOperator

Using the operator

We are using the Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

detect_text = CloudVisionDetectTextOperator(
    image=DETECT_IMAGE,
    retry=Retry(maximum=10.0),
    timeout=5,
    task_id="detect_text",
    language_hints="en",
    web_detection_params={'include_geo_results': True},
)

The result can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

detect_text_result = BashOperator(
    bash_command="echo {{ task_instance.xcom_pull('detect_text')['textAnnotations'][0] }}",
    task_id="detect_text_result",
)

Templating

template_fields: Sequence[str] = (
    "image",
    "max_results",
    "timeout",
    "gcp_conn_id",
    "impersonation_chain",
)

More information

See Google Cloud Vision Text Detection documentation.

CloudVisionTextDetectOperator

Run document text detection for an image.

For parameter definition, take a look at CloudVisionTextDetectOperator

Using the operator

We are using the Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

document_detect_text = CloudVisionTextDetectOperator(
    image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="document_detect_text"
)

The result can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

document_detect_text_result = BashOperator(
    bash_command="echo {{ task_instance.xcom_pull('document_detect_text')['textAnnotations'][0] }}",
    task_id="document_detect_text_result",
)

Templating

template_fields: Sequence[str] = (
    "image",
    "max_results",
    "timeout",
    "gcp_conn_id",
    "impersonation_chain",
)  # Iterable[str]

More information

See Google Cloud Vision Document Text Detection documentation.

CloudVisionDetectImageLabelsOperator

Run image label detection for an image.

For parameter definition, take a look at CloudVisionDetectImageLabelsOperator

Using the operator

We are using the Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

detect_labels = CloudVisionDetectImageLabelsOperator(
    image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="detect_labels"
)

The result can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

detect_labels_result = BashOperator(
    bash_command="echo {{ task_instance.xcom_pull('detect_labels')['labelAnnotations'][0] }}",
    task_id="detect_labels_result",
)

Templating

template_fields: Sequence[str] = (
    "image",
    "max_results",
    "timeout",
    "gcp_conn_id",
    "impersonation_chain",
)

More information

See Google Cloud Vision Label Detection documentation.

CloudVisionDetectImageSafeSearchOperator

Run image label detection for an image.

For parameter definition, take a look at CloudVisionDetectImageSafeSearchOperator

Using the operator

We are using the Retry objects from Google libraries:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

from google.api_core.retry import Retry  # isort:skip

airflow/providers/google/cloud/example_dags/example_vision.py[source]

detect_safe_search = CloudVisionDetectImageSafeSearchOperator(
    image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="detect_safe_search"
)

The result can be extracted from XCOM:

airflow/providers/google/cloud/example_dags/example_vision.py[source]

detect_safe_search_result = BashOperator(
    bash_command=f"echo {detect_safe_search.output}",
    task_id="detect_safe_search_result",
)

Templating

template_fields: Sequence[str] = (
    "image",
    "max_results",
    "timeout",
    "gcp_conn_id",
    "impersonation_chain",
)

Reference

For further information, look at:

Was this entry helpful?