#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Base operator for SQL to GCS operators."""
import abc
import json
import warnings
from tempfile import NamedTemporaryFile
from typing import Optional, Sequence, Union
import pyarrow as pa
import pyarrow.parquet as pq
import unicodecsv as csv
from airflow.models import BaseOperator
from airflow.providers.google.cloud.hooks.gcs import GCSHook
from airflow.utils.decorators import apply_defaults
[docs]class BaseSQLToGCSOperator(BaseOperator):
"""
:param sql: The SQL to execute.
:type sql: str
:param bucket: The bucket to upload to.
:type bucket: str
:param filename: The filename to use as the object name when uploading
to Google Cloud Storage. A ``{}`` should be specified in the filename
to allow the operator to inject file numbers in cases where the
file is split due to size.
:type filename: str
:param schema_filename: If set, the filename to use as the object name
when uploading a .json file containing the BigQuery schema fields
for the table that was dumped from the database.
:type schema_filename: str
:param approx_max_file_size_bytes: This operator supports the ability
to split large table dumps into multiple files (see notes in the
filename param docs above). This param allows developers to specify the
file size of the splits. Check https://cloud.google.com/storage/quotas
to see the maximum allowed file size for a single object.
:type approx_max_file_size_bytes: long
:param export_format: Desired format of files to be exported.
:type export_format: str
:param field_delimiter: The delimiter to be used for CSV files.
:type field_delimiter: str
:param null_marker: The null marker to be used for CSV files.
:type null_marker: str
:param gzip: Option to compress file for upload (does not apply to schemas).
:type gzip: bool
:param schema: The schema to use, if any. Should be a list of dict or
a str. Pass a string if using Jinja template, otherwise, pass a list of
dict. Examples could be seen: https://cloud.google.com/bigquery/docs
/schemas#specifying_a_json_schema_file
:type schema: str or list
:param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud.
:type gcp_conn_id: str
:param google_cloud_storage_conn_id: (Deprecated) The connection ID used to connect to Google Cloud.
This parameter has been deprecated. You should pass the gcp_conn_id parameter instead.
:type google_cloud_storage_conn_id: str
:param delegate_to: The account to impersonate using domain-wide delegation of authority,
if any. For this to work, the service account making the request must have
domain-wide delegation enabled.
:type delegate_to: str
:param parameters: a parameters dict that is substituted at query runtime.
:type parameters: dict
:param impersonation_chain: Optional service account to impersonate using short-term
credentials, or chained list of accounts required to get the access_token
of the last account in the list, which will be impersonated in the request.
If set as a string, the account must grant the originating account
the Service Account Token Creator IAM role.
If set as a sequence, the identities from the list must grant
Service Account Token Creator IAM role to the directly preceding identity, with first
account from the list granting this role to the originating account (templated).
:type impersonation_chain: Union[str, Sequence[str]]
"""
[docs] template_fields = (
'sql',
'bucket',
'filename',
'schema_filename',
'schema',
'parameters',
'impersonation_chain',
)
[docs] template_ext = ('.sql',)
@apply_defaults
def __init__(
self,
*, # pylint: disable=too-many-arguments
sql: str,
bucket: str,
filename: str,
schema_filename: Optional[str] = None,
approx_max_file_size_bytes: int = 1900000000,
export_format: str = 'json',
field_delimiter: str = ',',
null_marker: Optional[str] = None,
gzip: bool = False,
schema: Optional[Union[str, list]] = None,
parameters: Optional[dict] = None,
gcp_conn_id: str = 'google_cloud_default',
google_cloud_storage_conn_id: Optional[str] = None,
delegate_to: Optional[str] = None,
impersonation_chain: Optional[Union[str, Sequence[str]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
if google_cloud_storage_conn_id:
warnings.warn(
"The google_cloud_storage_conn_id parameter has been deprecated. You should pass "
"the gcp_conn_id parameter.",
DeprecationWarning,
stacklevel=3,
)
gcp_conn_id = google_cloud_storage_conn_id
self.sql = sql
self.bucket = bucket
self.filename = filename
self.schema_filename = schema_filename
self.approx_max_file_size_bytes = approx_max_file_size_bytes
self.export_format = export_format.lower()
self.field_delimiter = field_delimiter
self.null_marker = null_marker
self.gzip = gzip
self.schema = schema
self.parameters = parameters
self.gcp_conn_id = gcp_conn_id
self.delegate_to = delegate_to
self.impersonation_chain = impersonation_chain
[docs] def execute(self, context):
self.log.info("Executing query")
cursor = self.query()
self.log.info("Writing local data files")
files_to_upload = self._write_local_data_files(cursor)
# If a schema is set, create a BQ schema JSON file.
if self.schema_filename:
self.log.info("Writing local schema file")
files_to_upload.append(self._write_local_schema_file(cursor))
# Flush all files before uploading
for tmp_file in files_to_upload:
tmp_file['file_handle'].flush()
self.log.info("Uploading %d files to GCS.", len(files_to_upload))
self._upload_to_gcs(files_to_upload)
self.log.info("Removing local files")
# Close all temp file handles.
for tmp_file in files_to_upload:
tmp_file['file_handle'].close()
[docs] def convert_types(self, schema, col_type_dict, row) -> list:
"""Convert values from DBAPI to output-friendly formats."""
return [self.convert_type(value, col_type_dict.get(name)) for name, value in zip(schema, row)]
[docs] def _write_local_data_files(self, cursor):
"""
Takes a cursor, and writes results to a local file.
:return: A dictionary where keys are filenames to be used as object
names in GCS, and values are file handles to local files that
contain the data for the GCS objects.
"""
schema = list(map(lambda schema_tuple: schema_tuple[0], cursor.description))
col_type_dict = self._get_col_type_dict()
file_no = 0
tmp_file_handle = NamedTemporaryFile(delete=True)
if self.export_format == 'csv':
file_mime_type = 'text/csv'
elif self.export_format == 'parquet':
file_mime_type = 'application/octet-stream'
else:
file_mime_type = 'application/json'
files_to_upload = [
{
'file_name': self.filename.format(file_no),
'file_handle': tmp_file_handle,
'file_mime_type': file_mime_type,
}
]
self.log.info("Current file count: %d", len(files_to_upload))
if self.export_format == 'csv':
csv_writer = self._configure_csv_file(tmp_file_handle, schema)
if self.export_format == 'parquet':
parquet_schema = self._convert_parquet_schema(cursor)
parquet_writer = self._configure_parquet_file(tmp_file_handle, parquet_schema)
for row in cursor:
# Convert datetime objects to utc seconds, and decimals to floats.
# Convert binary type object to string encoded with base64.
row = self.convert_types(schema, col_type_dict, row)
if self.export_format == 'csv':
if self.null_marker is not None:
row = [value if value is not None else self.null_marker for value in row]
csv_writer.writerow(row)
elif self.export_format == 'parquet':
if self.null_marker is not None:
row = [value if value is not None else self.null_marker for value in row]
row_pydic = {col: [value] for col, value in zip(schema, row)}
tbl = pa.Table.from_pydict(row_pydic, parquet_schema)
parquet_writer.write_table(tbl)
else:
row_dict = dict(zip(schema, row))
tmp_file_handle.write(
json.dumps(row_dict, sort_keys=True, ensure_ascii=False).encode("utf-8")
)
# Append newline to make dumps BigQuery compatible.
tmp_file_handle.write(b'\n')
# Stop if the file exceeds the file size limit.
if tmp_file_handle.tell() >= self.approx_max_file_size_bytes:
file_no += 1
tmp_file_handle = NamedTemporaryFile(delete=True)
files_to_upload.append(
{
'file_name': self.filename.format(file_no),
'file_handle': tmp_file_handle,
'file_mime_type': file_mime_type,
}
)
self.log.info("Current file count: %d", len(files_to_upload))
if self.export_format == 'csv':
csv_writer = self._configure_csv_file(tmp_file_handle, schema)
if self.export_format == 'parquet':
parquet_writer = self._configure_parquet_file(tmp_file_handle, parquet_schema)
return files_to_upload
[docs] def _convert_parquet_schema(self, cursor):
type_map = {
'INTEGER': pa.int64(),
'FLOAT': pa.float64(),
'NUMERIC': pa.float64(),
'BIGNUMERIC': pa.float64(),
'BOOL': pa.bool_(),
'STRING': pa.string(),
'BYTES': pa.binary(),
'DATE': pa.date32(),
'DATETIME': pa.date64(),
'TIMESTAMP': pa.timestamp('s'),
}
columns = [field[0] for field in cursor.description]
bq_types = [self.field_to_bigquery(field) for field in cursor.description]
pq_types = [type_map.get(bq_type, pa.string()) for bq_type in bq_types]
parquet_schema = pa.schema(zip(columns, pq_types))
return parquet_schema
@abc.abstractmethod
"""Execute DBAPI query."""
@abc.abstractmethod
[docs] def field_to_bigquery(self, field):
"""Convert a DBAPI field to BigQuery schema format."""
@abc.abstractmethod
[docs] def convert_type(self, value, schema_type):
"""Convert a value from DBAPI to output-friendly formats."""
[docs] def _get_col_type_dict(self):
"""Return a dict of column name and column type based on self.schema if not None."""
schema = []
if isinstance(self.schema, str):
schema = json.loads(self.schema)
elif isinstance(self.schema, list):
schema = self.schema
elif self.schema is not None:
self.log.warning('Using default schema due to unexpected type. Should be a string or list.')
col_type_dict = {}
try:
col_type_dict = {col['name']: col['type'] for col in schema}
except KeyError:
self.log.warning(
'Using default schema due to missing name or type. Please '
'refer to: https://cloud.google.com/bigquery/docs/schemas'
'#specifying_a_json_schema_file'
)
return col_type_dict
[docs] def _write_local_schema_file(self, cursor):
"""
Takes a cursor, and writes the BigQuery schema for the results to a
local file system. Schema for database will be read from cursor if
not specified.
:return: A dictionary where key is a filename to be used as an object
name in GCS, and values are file handles to local files that
contains the BigQuery schema fields in .json format.
"""
if self.schema:
self.log.info("Using user schema")
schema = self.schema
else:
self.log.info("Starts generating schema")
schema = [self.field_to_bigquery(field) for field in cursor.description]
if isinstance(schema, list):
schema = json.dumps(schema, sort_keys=True)
self.log.info('Using schema for %s', self.schema_filename)
self.log.debug("Current schema: %s", schema)
tmp_schema_file_handle = NamedTemporaryFile(delete=True)
tmp_schema_file_handle.write(schema.encode('utf-8'))
schema_file_to_upload = {
'file_name': self.schema_filename,
'file_handle': tmp_schema_file_handle,
'file_mime_type': 'application/json',
}
return schema_file_to_upload
[docs] def _upload_to_gcs(self, files_to_upload):
"""
Upload all of the file splits (and optionally the schema .json file) to
Google Cloud Storage.
"""
hook = GCSHook(
gcp_conn_id=self.gcp_conn_id,
delegate_to=self.delegate_to,
impersonation_chain=self.impersonation_chain,
)
for tmp_file in files_to_upload:
hook.upload(
self.bucket,
tmp_file.get('file_name'),
tmp_file.get('file_handle').name,
mime_type=tmp_file.get('file_mime_type'),
gzip=self.gzip if tmp_file.get('file_name') != self.schema_filename else False,
)