#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google BigQuery service.
"""
import os
from datetime import datetime
from airflow import models
from airflow.operators.bash import BashOperator
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCheckOperator,
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateEmptyTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryExecuteQueryOperator,
BigQueryGetDataOperator,
BigQueryInsertJobOperator,
BigQueryIntervalCheckOperator,
BigQueryValueCheckOperator,
)
from airflow.utils.dates import days_ago
PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project")
DATASET_NAME = os.environ.get("GCP_BIGQUERY_DATASET_NAME", "test_dataset")
LOCATION = "southamerica-east1"
TABLE_1 = "table1"
TABLE_2 = "table2"
INSERT_DATE = datetime.now().strftime("%Y-%m-%d")
# [START howto_operator_bigquery_query]
INSERT_ROWS_QUERY = (
f"INSERT {DATASET_NAME}.{TABLE_1} VALUES "
f"(42, 'monthy python', '{INSERT_DATE}'), "
f"(42, 'fishy fish', '{INSERT_DATE}');"
)
# [END howto_operator_bigquery_query]
SCHEMA = [
{"name": "value", "type": "INTEGER", "mode": "REQUIRED"},
{"name": "name", "type": "STRING", "mode": "NULLABLE"},
{"name": "ds", "type": "DATE", "mode": "NULLABLE"},
]
for location in [None, LOCATION]:
dag_id = "example_bigquery_queries_location" if location else "example_bigquery_queries"
with models.DAG(
dag_id,
schedule_interval=None, # Override to match your needs
start_date=days_ago(1),
tags=["example"],
user_defined_macros={"DATASET": DATASET_NAME, "TABLE": TABLE_1},
) as dag_with_locations:
create_dataset = BigQueryCreateEmptyDatasetOperator(
task_id="create-dataset",
dataset_id=DATASET_NAME,
location=location,
)
create_table_1 = BigQueryCreateEmptyTableOperator(
task_id="create_table_1",
dataset_id=DATASET_NAME,
table_id=TABLE_1,
schema_fields=SCHEMA,
location=location,
)
create_table_2 = BigQueryCreateEmptyTableOperator(
task_id="create_table_2",
dataset_id=DATASET_NAME,
table_id=TABLE_2,
schema_fields=SCHEMA,
location=location,
)
create_dataset >> [create_table_1, create_table_2]
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset", dataset_id=DATASET_NAME, delete_contents=True
)
# [START howto_operator_bigquery_insert_job]
insert_query_job = BigQueryInsertJobOperator(
task_id="insert_query_job",
configuration={
"query": {
"query": INSERT_ROWS_QUERY,
"useLegacySql": False,
}
},
location=location,
)
# [END howto_operator_bigquery_insert_job]
# [START howto_operator_bigquery_select_job]
select_query_job = BigQueryInsertJobOperator(
task_id="select_query_job",
configuration={
"query": {
"query": "{% include 'example_bigquery_query.sql' %}",
"useLegacySql": False,
}
},
location=location,
)
# [END howto_operator_bigquery_select_job]
execute_insert_query = BigQueryExecuteQueryOperator(
task_id="execute_insert_query", sql=INSERT_ROWS_QUERY, use_legacy_sql=False, location=location
)
bigquery_execute_multi_query = BigQueryExecuteQueryOperator(
task_id="execute_multi_query",
sql=[
f"SELECT * FROM {DATASET_NAME}.{TABLE_2}",
f"SELECT COUNT(*) FROM {DATASET_NAME}.{TABLE_2}",
],
use_legacy_sql=False,
location=location,
)
execute_query_save = BigQueryExecuteQueryOperator(
task_id="execute_query_save",
sql=f"SELECT * FROM {DATASET_NAME}.{TABLE_1}",
use_legacy_sql=False,
destination_dataset_table=f"{DATASET_NAME}.{TABLE_2}",
location=location,
)
# [START howto_operator_bigquery_get_data]
get_data = BigQueryGetDataOperator(
task_id="get_data",
dataset_id=DATASET_NAME,
table_id=TABLE_1,
max_results=10,
selected_fields="value,name",
location=location,
)
# [END howto_operator_bigquery_get_data]
get_data_result = BashOperator(
task_id="get_data_result",
bash_command="echo \"{{ task_instance.xcom_pull('get_data') }}\"",
)
# [START howto_operator_bigquery_check]
check_count = BigQueryCheckOperator(
task_id="check_count",
sql=f"SELECT COUNT(*) FROM {DATASET_NAME}.{TABLE_1}",
use_legacy_sql=False,
location=location,
)
# [END howto_operator_bigquery_check]
# [START howto_operator_bigquery_value_check]
check_value = BigQueryValueCheckOperator(
task_id="check_value",
sql=f"SELECT COUNT(*) FROM {DATASET_NAME}.{TABLE_1}",
pass_value=4,
use_legacy_sql=False,
location=location,
)
# [END howto_operator_bigquery_value_check]
# [START howto_operator_bigquery_interval_check]
check_interval = BigQueryIntervalCheckOperator(
task_id="check_interval",
table=f"{DATASET_NAME}.{TABLE_1}",
days_back=1,
metrics_thresholds={"COUNT(*)": 1.5},
use_legacy_sql=False,
location=location,
)
# [END howto_operator_bigquery_interval_check]
[create_table_1, create_table_2] >> insert_query_job >> select_query_job
insert_query_job >> execute_insert_query
execute_insert_query >> get_data >> get_data_result >> delete_dataset
execute_insert_query >> execute_query_save >> bigquery_execute_multi_query >> delete_dataset
execute_insert_query >> [check_count, check_value, check_interval] >> delete_dataset