airflow.providers.google.cloud.operators.dataproc
¶
This module contains Google Dataproc operators.
Module Contents¶
-
class
airflow.providers.google.cloud.operators.dataproc.
ClusterGenerator
(project_id: str, num_workers: Optional[int] = None, zone: Optional[str] = None, network_uri: Optional[str] = None, subnetwork_uri: Optional[str] = None, internal_ip_only: Optional[bool] = None, tags: Optional[List[str]] = None, storage_bucket: Optional[str] = None, init_actions_uris: Optional[List[str]] = None, init_action_timeout: str = '10m', metadata: Optional[Dict] = None, custom_image: Optional[str] = None, custom_image_project_id: Optional[str] = None, image_version: Optional[str] = None, autoscaling_policy: Optional[str] = None, properties: Optional[Dict] = None, optional_components: Optional[List[str]] = None, num_masters: int = 1, master_machine_type: str = 'n1-standard-4', master_disk_type: str = 'pd-standard', master_disk_size: int = 1024, worker_machine_type: str = 'n1-standard-4', worker_disk_type: str = 'pd-standard', worker_disk_size: int = 1024, num_preemptible_workers: int = 0, service_account: Optional[str] = None, service_account_scopes: Optional[List[str]] = None, idle_delete_ttl: Optional[int] = None, auto_delete_time: Optional[datetime] = None, auto_delete_ttl: Optional[int] = None, customer_managed_key: Optional[str] = None, **kwargs)[source]¶ Create a new Dataproc Cluster.
- Parameters
cluster_name (str) – The name of the DataProc cluster to create. (templated)
project_id (str) – The ID of the google cloud project in which to create the cluster. (templated)
num_workers (int) – The # of workers to spin up. If set to zero will spin up cluster in a single node mode
storage_bucket (str) – The storage bucket to use, setting to None lets dataproc generate a custom one for you
init_actions_uris (list[str]) – List of GCS uri’s containing dataproc initialization scripts
init_action_timeout (str) – Amount of time executable scripts in init_actions_uris has to complete
metadata (dict) – dict of key-value google compute engine metadata entries to add to all instances
image_version (str) – the version of software inside the Dataproc cluster
custom_image (str) – custom Dataproc image for more info see https://cloud.google.com/dataproc/docs/guides/dataproc-images
custom_image_project_id (str) – project id for the custom Dataproc image, for more info see https://cloud.google.com/dataproc/docs/guides/dataproc-images
autoscaling_policy (str) – The autoscaling policy used by the cluster. Only resource names including projectid and location (region) are valid. Example:
projects/[projectId]/locations/[dataproc_region]/autoscalingPolicies/[policy_id]
properties (dict) – dict of properties to set on config files (e.g. spark-defaults.conf), see https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#SoftwareConfig
optional_components (list[str]) – List of optional cluster components, for more info see https://cloud.google.com/dataproc/docs/reference/rest/v1/ClusterConfig#Component
num_masters (int) – The # of master nodes to spin up
master_machine_type (str) – Compute engine machine type to use for the master node
master_disk_type (str) – Type of the boot disk for the master node (default is
pd-standard
). Valid values:pd-ssd
(Persistent Disk Solid State Drive) orpd-standard
(Persistent Disk Hard Disk Drive).master_disk_size (int) – Disk size for the master node
worker_machine_type (str) – Compute engine machine type to use for the worker nodes
worker_disk_type (str) – Type of the boot disk for the worker node (default is
pd-standard
). Valid values:pd-ssd
(Persistent Disk Solid State Drive) orpd-standard
(Persistent Disk Hard Disk Drive).worker_disk_size (int) – Disk size for the worker nodes
num_preemptible_workers (int) – The # of preemptible worker nodes to spin up
labels (dict) – dict of labels to add to the cluster
zone (str) – The zone where the cluster will be located. Set to None to auto-zone. (templated)
network_uri (str) – The network uri to be used for machine communication, cannot be specified with subnetwork_uri
subnetwork_uri (str) – The subnetwork uri to be used for machine communication, cannot be specified with network_uri
internal_ip_only (bool) – If true, all instances in the cluster will only have internal IP addresses. This can only be enabled for subnetwork enabled networks
region (str) – The specified region where the dataproc cluster is created.
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
service_account (str) – The service account of the dataproc instances.
service_account_scopes (list[str]) – The URIs of service account scopes to be included.
idle_delete_ttl (int) – The longest duration that cluster would keep alive while staying idle. Passing this threshold will cause cluster to be auto-deleted. A duration in seconds.
auto_delete_time (datetime.datetime) – The time when cluster will be auto-deleted.
auto_delete_ttl (int) – The life duration of cluster, the cluster will be auto-deleted at the end of this duration. A duration in seconds. (If auto_delete_time is set this parameter will be ignored)
customer_managed_key (str) – The customer-managed key used for disk encryption
projects/[PROJECT_STORING_KEYS]/locations/[LOCATION]/keyRings/[KEY_RING_NAME]/cryptoKeys/[KEY_NAME]
# noqa # pylint: disable=line-too-long
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocCreateClusterOperator
(*, cluster_name: str, region: Optional[str] = None, project_id: Optional[str] = None, cluster_config: Optional[Dict] = None, labels: Optional[Dict] = None, request_id: Optional[str] = None, delete_on_error: bool = True, use_if_exists: bool = True, retry: Optional[Retry] = None, timeout: float = 1 * 60 * 60, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Create a new cluster on Google Cloud Dataproc. The operator will wait until the creation is successful or an error occurs in the creation process. If the cluster already exists and
use_if_exists
is True then the operator will:if cluster state is ERROR then delete it if specified and raise error
if cluster state is CREATING wait for it and then check for ERROR state
if cluster state is DELETING wait for it and then create new cluster
Please refer to
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters
for a detailed explanation on the different parameters. Most of the configuration parameters detailed in the link are available as a parameter to this operator.
See also
For more information on how to use this operator, take a look at the guide: Create a Cluster
- Parameters
project_id (str) – The ID of the google cloud project in which to create the cluster. (templated)
cluster_name (str) – Name of the cluster to create
labels (Dict[str, str]) – Labels that will be assigned to created cluster
cluster_config (Union[Dict, google.cloud.dataproc_v1.types.ClusterConfig]) – Required. The cluster config to create. If a dict is provided, it must be of the same form as the protobuf message
ClusterConfig
region (str) – The specified region where the dataproc cluster is created.
request_id (str) – Optional. A unique id used to identify the request. If the server receives two
DeleteClusterRequest
requests with the same id, then the second request will be ignored and the firstgoogle.longrunning.Operation
created and stored in the backend is returned.retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
- Parm delete_on_error
If true the cluster will be deleted if created with ERROR state. Default value is true.
- Parm use_if_exists
If true use existing cluster
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocScaleClusterOperator
(*, cluster_name: str, project_id: Optional[str] = None, region: str = 'global', num_workers: int = 2, num_preemptible_workers: int = 0, graceful_decommission_timeout: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Scale, up or down, a cluster on Google Cloud Dataproc. The operator will wait until the cluster is re-scaled.
Example:
t1 = DataprocClusterScaleOperator( task_id='dataproc_scale', project_id='my-project', cluster_name='cluster-1', num_workers=10, num_preemptible_workers=10, graceful_decommission_timeout='1h', dag=dag)
See also
For more detail on about scaling clusters have a look at the reference: https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/scaling-clusters
- Parameters
cluster_name (str) – The name of the cluster to scale. (templated)
project_id (str) – The ID of the google cloud project in which the cluster runs. (templated)
region (str) – The region for the dataproc cluster. (templated)
num_workers (int) – The new number of workers
num_preemptible_workers (int) – The new number of preemptible workers
graceful_decommission_timeout (str) – Timeout for graceful YARN decommissioning. Maximum value is 1d
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocDeleteClusterOperator
(*, project_id: str, region: str, cluster_name: str, cluster_uuid: Optional[str] = None, request_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Deletes a cluster in a project.
- Parameters
project_id (str) – Required. The ID of the Google Cloud project that the cluster belongs to (templated).
region (str) – Required. The Cloud Dataproc region in which to handle the request (templated).
cluster_name (str) – Required. The cluster name (templated).
cluster_uuid (str) – Optional. Specifying the
cluster_uuid
means the RPC should fail if cluster with specified UUID does not exist.request_id (str) – Optional. A unique id used to identify the request. If the server receives two
DeleteClusterRequest
requests with the same id, then the second request will be ignored and the firstgoogle.longrunning.Operation
created and stored in the backend is returned.retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocJobBaseOperator
(*, job_name: str = '{{task.task_id}}_{{ds_nodash}}', cluster_name: str = 'cluster-1', dataproc_properties: Optional[Dict] = None, dataproc_jars: Optional[List[str]] = None, gcp_conn_id: str = 'google_cloud_default', delegate_to: Optional[str] = None, labels: Optional[Dict] = None, region: Optional[str] = None, job_error_states: Optional[Set[str]] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, asynchronous: bool = False, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
The base class for operators that launch job on DataProc.
- Parameters
job_name (str) – The job name used in the DataProc cluster. This name by default is the task_id appended with the execution data, but can be templated. The name will always be appended with a random number to avoid name clashes.
cluster_name (str) – The name of the DataProc cluster.
dataproc_properties (dict) – Map for the Hive properties. Ideal to put in default arguments (templated)
dataproc_jars (list) – HCFS URIs of jar files to add to the CLASSPATH of the Hive server and Hadoop MapReduce (MR) tasks. Can contain Hive SerDes and UDFs. (templated)
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
delegate_to (str) – The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled.
labels (dict) – The labels to associate with this job. Label keys must contain 1 to 63 characters, and must conform to RFC 1035. Label values may be empty, but, if present, must contain 1 to 63 characters, and must conform to RFC 1035. No more than 32 labels can be associated with a job.
region (str) – The specified region where the dataproc cluster is created.
job_error_states (set) – Job states that should be considered error states. Any states in this set will result in an error being raised and failure of the task. Eg, if the
CANCELLED
state should also be considered a task failure, pass in{'ERROR', 'CANCELLED'}
. Possible values are currently only'ERROR'
and'CANCELLED'
, but could change in the future. Defaults to{'ERROR'}
.impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
asynchronous (bool) – Flag to return after submitting the job to the Dataproc API. This is useful for submitting long running jobs and waiting on them asynchronously using the DataprocJobSensor
- Variables
dataproc_job_id (str) – The actual “jobId” as submitted to the Dataproc API. This is useful for identifying or linking to the job in the Google Cloud Console Dataproc UI, as the actual “jobId” submitted to the Dataproc API is appended with an 8 character random string.
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitPigJobOperator
(*, query: Optional[str] = None, query_uri: Optional[str] = None, variables: Optional[Dict] = None, **kwargs)[source]¶ Bases:
airflow.providers.google.cloud.operators.dataproc.DataprocJobBaseOperator
Start a Pig query Job on a Cloud DataProc cluster. The parameters of the operation will be passed to the cluster.
It’s a good practice to define dataproc_* parameters in the default_args of the dag like the cluster name and UDFs.
default_args = { 'cluster_name': 'cluster-1', 'dataproc_pig_jars': [ 'gs://example/udf/jar/datafu/1.2.0/datafu.jar', 'gs://example/udf/jar/gpig/1.2/gpig.jar' ] }
You can pass a pig script as string or file reference. Use variables to pass on variables for the pig script to be resolved on the cluster or use the parameters to be resolved in the script as template parameters.
Example:
t1 = DataProcPigOperator( task_id='dataproc_pig', query='a_pig_script.pig', variables={'out': 'gs://example/output/{{ds}}'}, dag=dag)
See also
For more detail on about job submission have a look at the reference: https://cloud.google.com/dataproc/reference/rest/v1/projects.regions.jobs
- Parameters
-
template_fields
= ['query', 'variables', 'job_name', 'cluster_name', 'region', 'dataproc_jars', 'dataproc_properties', 'impersonation_chain'][source]¶
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitHiveJobOperator
(*, query: Optional[str] = None, query_uri: Optional[str] = None, variables: Optional[Dict] = None, **kwargs)[source]¶ Bases:
airflow.providers.google.cloud.operators.dataproc.DataprocJobBaseOperator
Start a Hive query Job on a Cloud DataProc cluster.
- Parameters
-
template_fields
= ['query', 'variables', 'job_name', 'cluster_name', 'region', 'dataproc_jars', 'dataproc_properties', 'impersonation_chain'][source]¶
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitSparkSqlJobOperator
(*, query: Optional[str] = None, query_uri: Optional[str] = None, variables: Optional[Dict] = None, **kwargs)[source]¶ Bases:
airflow.providers.google.cloud.operators.dataproc.DataprocJobBaseOperator
Start a Spark SQL query Job on a Cloud DataProc cluster.
- Parameters
-
template_fields
= ['query', 'variables', 'job_name', 'cluster_name', 'region', 'dataproc_jars', 'dataproc_properties', 'impersonation_chain'][source]¶
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitSparkJobOperator
(*, main_jar: Optional[str] = None, main_class: Optional[str] = None, arguments: Optional[List] = None, archives: Optional[List] = None, files: Optional[List] = None, **kwargs)[source]¶ Bases:
airflow.providers.google.cloud.operators.dataproc.DataprocJobBaseOperator
Start a Spark Job on a Cloud DataProc cluster.
- Parameters
main_jar (str) – The HCFS URI of the jar file that contains the main class (use this or the main_class, not both together).
main_class (str) – Name of the job class. (use this or the main_jar, not both together).
arguments (list) – Arguments for the job. (templated)
archives (list) – List of archived files that will be unpacked in the work directory. Should be stored in Cloud Storage.
files (list) – List of files to be copied to the working directory
-
template_fields
= ['arguments', 'job_name', 'cluster_name', 'region', 'dataproc_jars', 'dataproc_properties', 'impersonation_chain'][source]¶
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitHadoopJobOperator
(*, main_jar: Optional[str] = None, main_class: Optional[str] = None, arguments: Optional[List] = None, archives: Optional[List] = None, files: Optional[List] = None, **kwargs)[source]¶ Bases:
airflow.providers.google.cloud.operators.dataproc.DataprocJobBaseOperator
Start a Hadoop Job on a Cloud DataProc cluster.
- Parameters
main_jar (str) – The HCFS URI of the jar file containing the main class (use this or the main_class, not both together).
main_class (str) – Name of the job class. (use this or the main_jar, not both together).
arguments (list) – Arguments for the job. (templated)
archives (list) – List of archived files that will be unpacked in the work directory. Should be stored in Cloud Storage.
files (list) – List of files to be copied to the working directory
-
template_fields
= ['arguments', 'job_name', 'cluster_name', 'region', 'dataproc_jars', 'dataproc_properties', 'impersonation_chain'][source]¶
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitPySparkJobOperator
(*, main: str, arguments: Optional[List] = None, archives: Optional[List] = None, pyfiles: Optional[List] = None, files: Optional[List] = None, **kwargs)[source]¶ Bases:
airflow.providers.google.cloud.operators.dataproc.DataprocJobBaseOperator
Start a PySpark Job on a Cloud DataProc cluster.
- Parameters
main (str) – [Required] The Hadoop Compatible Filesystem (HCFS) URI of the main Python file to use as the driver. Must be a .py file. (templated)
arguments (list) – Arguments for the job. (templated)
archives (list) – List of archived files that will be unpacked in the work directory. Should be stored in Cloud Storage.
files (list) – List of files to be copied to the working directory
pyfiles (list) – List of Python files to pass to the PySpark framework. Supported file types: .py, .egg, and .zip
-
template_fields
= ['main', 'arguments', 'job_name', 'cluster_name', 'region', 'dataproc_jars', 'dataproc_properties', 'impersonation_chain'][source]¶
-
_upload_file_temp
(self, bucket, local_file)[source]¶ Upload a local file to a Google Cloud Storage bucket.
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocCreateWorkflowTemplateOperator
(*, location: str, template: Dict, project_id: str, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Creates new workflow template.
- Parameters
project_id (str) – Required. The ID of the Google Cloud project the cluster belongs to.
location (str) – Required. The Cloud Dataproc region in which to handle the request.
template (Union[dict, WorkflowTemplate]) – The Dataproc workflow template to create. If a dict is provided, it must be of the same form as the protobuf message WorkflowTemplate.
retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocInstantiateWorkflowTemplateOperator
(*, template_id: str, region: str, project_id: Optional[str] = None, version: Optional[int] = None, request_id: Optional[str] = None, parameters: Optional[Dict[str, str]] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Instantiate a WorkflowTemplate on Google Cloud Dataproc. The operator will wait until the WorkflowTemplate is finished executing.
See also
Please refer to: https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiate
- Parameters
template_id (str) – The id of the template. (templated)
project_id (str) – The ID of the google cloud project in which the template runs
region (str) – The specified region where the dataproc cluster is created.
parameters (Dict[str, str]) – a map of parameters for Dataproc Template in key-value format: map (key: string, value: string) Example: { “date_from”: “2019-08-01”, “date_to”: “2019-08-02”}. Values may not exceed 100 characters. Please refer to: https://cloud.google.com/dataproc/docs/concepts/workflows/workflow-parameters
request_id (str) – Optional. A unique id used to identify the request. If the server receives two
SubmitJobRequest
requests with the same id, then the second request will be ignored and the firstJob
created and stored in the backend is returned. It is recommended to always set this value to a UUID.parameters – Optional. Map from parameter names to values that should be used for those parameters. Values may not exceed 100 characters.
retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocInstantiateInlineWorkflowTemplateOperator
(*, template: Dict, region: str, project_id: Optional[str] = None, request_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Instantiate a WorkflowTemplate Inline on Google Cloud Dataproc. The operator will wait until the WorkflowTemplate is finished executing.
See also
Please refer to: https://cloud.google.com/dataproc/docs/reference/rest/v1beta2/projects.regions.workflowTemplates/instantiateInline
- Parameters
template (dict) – The template contents. (templated)
project_id (str) – The ID of the google cloud project in which the template runs
region (str) – The specified region where the dataproc cluster is created.
parameters (Dict[str, str]) – a map of parameters for Dataproc Template in key-value format: map (key: string, value: string) Example: { “date_from”: “2019-08-01”, “date_to”: “2019-08-02”}. Values may not exceed 100 characters. Please refer to: https://cloud.google.com/dataproc/docs/concepts/workflows/workflow-parameters
request_id (str) – Optional. A unique id used to identify the request. If the server receives two
SubmitJobRequest
requests with the same id, then the second request will be ignored and the firstJob
created and stored in the backend is returned. It is recommended to always set this value to a UUID.parameters – Optional. Map from parameter names to values that should be used for those parameters. Values may not exceed 100 characters.
retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocSubmitJobOperator
(*, project_id: str, location: str, job: Dict, request_id: Optional[str] = None, retry: Optional[Retry] = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, asynchronous: bool = False, cancel_on_kill: bool = True, wait_timeout: Optional[int] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Submits a job to a cluster.
- Parameters
project_id (str) – Required. The ID of the Google Cloud project that the job belongs to.
location (str) – Required. The Cloud Dataproc region in which to handle the request.
job (Dict) – Required. The job resource. If a dict is provided, it must be of the same form as the protobuf message
Job
request_id (str) – Optional. A unique id used to identify the request. If the server receives two
SubmitJobRequest
requests with the same id, then the second request will be ignored and the firstJob
created and stored in the backend is returned. It is recommended to always set this value to a UUID.retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
gcp_conn_id (str) –
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).
asynchronous (bool) – Flag to return after submitting the job to the Dataproc API. This is useful for submitting long running jobs and waiting on them asynchronously using the DataprocJobSensor
cancel_on_kill (bool) – Flag which indicates whether cancel the hook’s job or not, when on_kill is called
wait_timeout (int) – How many seconds wait for job to be ready. Used only if
asynchronous
is False
-
class
airflow.providers.google.cloud.operators.dataproc.
DataprocUpdateClusterOperator
(*, location: str, cluster_name: str, cluster: Union[Dict, Cluster], update_mask: Union[Dict, FieldMask], graceful_decommission_timeout: Union[Dict, Duration], request_id: Optional[str] = None, project_id: Optional[str] = None, retry: Retry = None, timeout: Optional[float] = None, metadata: Optional[Sequence[Tuple[str, str]]] = None, gcp_conn_id: str = 'google_cloud_default', impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs)[source]¶ Bases:
airflow.models.BaseOperator
Updates a cluster in a project.
- Parameters
project_id (str) – Required. The ID of the Google Cloud project the cluster belongs to.
location (str) – Required. The Cloud Dataproc region in which to handle the request.
cluster_name (str) – Required. The cluster name.
cluster (Union[Dict, google.cloud.dataproc_v1beta2.types.Cluster]) –
Required. The changes to the cluster.
If a dict is provided, it must be of the same form as the protobuf message
Cluster
update_mask (Union[Dict, google.protobuf.field_mask_pb2.FieldMask]) – Required. Specifies the path, relative to
Cluster
, of the field to update. For example, to change the number of workers in a cluster to 5, theupdate_mask
parameter would be specified asconfig.worker_config.num_instances
, and thePATCH
request body would specify the new value. If a dict is provided, it must be of the same form as the protobuf messageFieldMask
graceful_decommission_timeout (Union[Dict, google.protobuf.duration_pb2.Duration]) – Optional. Timeout for graceful YARN decommissioning. Graceful decommissioning allows removing nodes from the cluster without interrupting jobs in progress. Timeout specifies how long to wait for jobs in progress to finish before forcefully removing nodes (and potentially interrupting jobs). Default timeout is 0 (for forceful decommission), and the maximum allowed timeout is 1 day.
request_id (str) – Optional. A unique id used to identify the request. If the server receives two
UpdateClusterRequest
requests with the same id, then the second request will be ignored and the firstgoogle.longrunning.Operation
created and stored in the backend is returned.retry (google.api_core.retry.Retry) – A retry object used to retry requests. If
None
is specified, requests will not be retried.timeout (float) – The amount of time, in seconds, to wait for the request to complete. Note that if
retry
is specified, the timeout applies to each individual attempt.metadata (Sequence[Tuple[str, str]]) – Additional metadata that is provided to the method.
gcp_conn_id (str) – The connection ID to use connecting to Google Cloud.
impersonation_chain (Union[str, Sequence[str]]) – Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated).