Airflow Summit 2025 is coming October 07-09. Register now to secure your spot!

airflow.providers.google.cloud.operators.vertex_ai.auto_ml

This module contains Google Vertex AI operators.

Classes

AutoMLTrainingJobBaseOperator

The base class for operators that launch AutoML jobs on VertexAI.

CreateAutoMLForecastingTrainingJobOperator

Create AutoML Forecasting Training job.

CreateAutoMLImageTrainingJobOperator

Create Auto ML Image Training job.

CreateAutoMLTabularTrainingJobOperator

Create Auto ML Tabular Training job.

CreateAutoMLVideoTrainingJobOperator

Create Auto ML Video Training job.

DeleteAutoMLTrainingJobOperator

Delete an AutoML training job.

ListAutoMLTrainingJobOperator

List an AutoML training job.

Module Contents

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.AutoMLTrainingJobBaseOperator(*, project_id, region, display_name, labels=None, parent_model=None, is_default_version=None, model_version_aliases=None, model_version_description=None, training_encryption_spec_key_name=None, model_encryption_spec_key_name=None, training_fraction_split=None, test_fraction_split=None, model_display_name=None, model_labels=None, sync=True, gcp_conn_id='google_cloud_default', impersonation_chain=None, **kwargs)[source]

Bases: airflow.providers.google.cloud.operators.cloud_base.GoogleCloudBaseOperator

The base class for operators that launch AutoML jobs on VertexAI.

project_id[source]
region[source]
display_name[source]
labels = None[source]
parent_model = None[source]
is_default_version = None[source]
model_version_aliases = None[source]
model_version_description = None[source]
training_encryption_spec_key_name = None[source]
model_encryption_spec_key_name = None[source]
training_fraction_split = None[source]
test_fraction_split = None[source]
model_display_name = None[source]
model_labels = None[source]
sync = True[source]
gcp_conn_id = 'google_cloud_default'[source]
impersonation_chain = None[source]
hook: airflow.providers.google.cloud.hooks.vertex_ai.auto_ml.AutoMLHook | None = None[source]

Override this method to include parameters for link formatting in extra links.

For example; most of the links on the Google provider require project_id and location in the Link. To be not repeat; you can override this function and return something like the following:

{
    "project_id": self.project_id,
    "location": self.location,
}
on_kill()[source]

Act as a callback called when the operator is killed; cancel any running job.

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLForecastingTrainingJobOperator(*, dataset_id, target_column, time_column, time_series_identifier_column, unavailable_at_forecast_columns, available_at_forecast_columns, forecast_horizon, data_granularity_unit, data_granularity_count, display_name, model_display_name=None, optimization_objective=None, column_specs=None, column_transformations=None, validation_fraction_split=None, predefined_split_column_name=None, weight_column=None, time_series_attribute_columns=None, context_window=None, export_evaluated_data_items=False, export_evaluated_data_items_bigquery_destination_uri=None, export_evaluated_data_items_override_destination=False, quantiles=None, validation_options=None, budget_milli_node_hours=1000, region, impersonation_chain=None, parent_model=None, window_stride_length=None, window_max_count=None, holiday_regions=None, **kwargs)[source]

Bases: AutoMLTrainingJobBaseOperator

Create AutoML Forecasting Training job.

template_fields = ('parent_model', 'dataset_id', 'region', 'impersonation_chain', 'display_name', 'model_display_name')[source]
dataset_id[source]
target_column[source]
time_column[source]
time_series_identifier_column[source]
unavailable_at_forecast_columns[source]
available_at_forecast_columns[source]
forecast_horizon[source]
data_granularity_unit[source]
data_granularity_count[source]
optimization_objective = None[source]
column_specs = None[source]
column_transformations = None[source]
validation_fraction_split = None[source]
predefined_split_column_name = None[source]
weight_column = None[source]
time_series_attribute_columns = None[source]
context_window = None[source]
export_evaluated_data_items = False[source]
export_evaluated_data_items_bigquery_destination_uri = None[source]
export_evaluated_data_items_override_destination = False[source]
quantiles = None[source]
validation_options = None[source]
budget_milli_node_hours = 1000[source]
window_stride_length = None[source]
window_max_count = None[source]
holiday_regions = None[source]
execute(context)[source]

Derive when creating an operator.

The main method to execute the task. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLImageTrainingJobOperator(*, dataset_id, prediction_type='classification', multi_label=False, model_type='CLOUD', base_model=None, validation_fraction_split=None, training_filter_split=None, validation_filter_split=None, test_filter_split=None, budget_milli_node_hours=None, disable_early_stopping=False, region, impersonation_chain=None, parent_model=None, **kwargs)[source]

Bases: AutoMLTrainingJobBaseOperator

Create Auto ML Image Training job.

template_fields = ('parent_model', 'dataset_id', 'region', 'impersonation_chain')[source]
dataset_id[source]
prediction_type = 'classification'[source]
multi_label = False[source]
model_type = 'CLOUD'[source]
base_model = None[source]
validation_fraction_split = None[source]
training_filter_split = None[source]
validation_filter_split = None[source]
test_filter_split = None[source]
budget_milli_node_hours = None[source]
disable_early_stopping = False[source]
execute(context)[source]

Derive when creating an operator.

The main method to execute the task. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLTabularTrainingJobOperator(*, dataset_id, target_column, optimization_prediction_type, optimization_objective=None, column_specs=None, column_transformations=None, optimization_objective_recall_value=None, optimization_objective_precision_value=None, validation_fraction_split=None, predefined_split_column_name=None, timestamp_split_column_name=None, weight_column=None, budget_milli_node_hours=1000, disable_early_stopping=False, export_evaluated_data_items=False, export_evaluated_data_items_bigquery_destination_uri=None, export_evaluated_data_items_override_destination=False, region, impersonation_chain=None, parent_model=None, **kwargs)[source]

Bases: AutoMLTrainingJobBaseOperator

Create Auto ML Tabular Training job.

template_fields = ('parent_model', 'dataset_id', 'region', 'impersonation_chain')[source]
dataset_id[source]
target_column[source]
optimization_prediction_type[source]
optimization_objective = None[source]
column_specs = None[source]
column_transformations = None[source]
optimization_objective_recall_value = None[source]
optimization_objective_precision_value = None[source]
validation_fraction_split = None[source]
predefined_split_column_name = None[source]
timestamp_split_column_name = None[source]
weight_column = None[source]
budget_milli_node_hours = 1000[source]
disable_early_stopping = False[source]
export_evaluated_data_items = False[source]
export_evaluated_data_items_bigquery_destination_uri = None[source]
export_evaluated_data_items_override_destination = False[source]
execute(context)[source]

Derive when creating an operator.

The main method to execute the task. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLVideoTrainingJobOperator(*, dataset_id, prediction_type='classification', model_type='CLOUD', training_filter_split=None, test_filter_split=None, region, impersonation_chain=None, parent_model=None, **kwargs)[source]

Bases: AutoMLTrainingJobBaseOperator

Create Auto ML Video Training job.

template_fields = ('parent_model', 'dataset_id', 'region', 'impersonation_chain')[source]
dataset_id[source]
prediction_type = 'classification'[source]
model_type = 'CLOUD'[source]
training_filter_split = None[source]
test_filter_split = None[source]
execute(context)[source]

Derive when creating an operator.

The main method to execute the task. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.DeleteAutoMLTrainingJobOperator(*, training_pipeline_id, region, project_id, retry=DEFAULT, timeout=None, metadata=(), gcp_conn_id='google_cloud_default', impersonation_chain=None, **kwargs)[source]

Bases: airflow.providers.google.cloud.operators.cloud_base.GoogleCloudBaseOperator

Delete an AutoML training job.

Can be used with AutoMLForecastingTrainingJob, AutoMLImageTrainingJob, AutoMLTabularTrainingJob, AutoMLTextTrainingJob, or AutoMLVideoTrainingJob.

template_fields = ('training_pipeline_id', 'region', 'project_id', 'impersonation_chain')[source]
training_pipeline_id[source]
region[source]
project_id[source]
retry[source]
timeout = None[source]
metadata = ()[source]
gcp_conn_id = 'google_cloud_default'[source]
impersonation_chain = None[source]
execute(context)[source]

Derive when creating an operator.

The main method to execute the task. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.ListAutoMLTrainingJobOperator(*, region, project_id, page_size=None, page_token=None, filter=None, read_mask=None, retry=DEFAULT, timeout=None, metadata=(), gcp_conn_id='google_cloud_default', impersonation_chain=None, **kwargs)[source]

Bases: airflow.providers.google.cloud.operators.cloud_base.GoogleCloudBaseOperator

List an AutoML training job.

Can be used with AutoMLForecastingTrainingJob, AutoMLImageTrainingJob, AutoMLTabularTrainingJob, AutoMLTextTrainingJob, or AutoMLVideoTrainingJob in a Location.

template_fields = ('region', 'project_id', 'impersonation_chain')[source]
region[source]
project_id[source]
page_size = None[source]
page_token = None[source]
filter = None[source]
read_mask = None[source]
retry[source]
timeout = None[source]
metadata = ()[source]
gcp_conn_id = 'google_cloud_default'[source]
impersonation_chain = None[source]

Override this method to include parameters for link formatting in extra links.

For example; most of the links on the Google provider require project_id and location in the Link. To be not repeat; you can override this function and return something like the following:

{
    "project_id": self.project_id,
    "location": self.location,
}
execute(context)[source]

Derive when creating an operator.

The main method to execute the task. Context is the same dictionary used as when rendering jinja templates.

Refer to get_template_context for more context.

Was this entry helpful?