airflow.providers.google.cloud.operators.vertex_ai.auto_ml¶
This module contains Google Vertex AI operators.
Classes¶
The base class for operators that launch AutoML jobs on VertexAI. |
|
Create AutoML Forecasting Training job. |
|
Create Auto ML Image Training job. |
|
Create Auto ML Tabular Training job. |
|
Create Auto ML Video Training job. |
|
Delete an AutoML training job. |
|
List an AutoML training job. |
Module Contents¶
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.AutoMLTrainingJobBaseOperator(*, project_id, region, display_name, labels=None, parent_model=None, is_default_version=None, model_version_aliases=None, model_version_description=None, training_encryption_spec_key_name=None, model_encryption_spec_key_name=None, training_fraction_split=None, test_fraction_split=None, model_display_name=None, model_labels=None, sync=True, gcp_conn_id='google_cloud_default', impersonation_chain=None, **kwargs)[source]¶
Bases:
airflow.providers.google.cloud.operators.cloud_base.GoogleCloudBaseOperator
The base class for operators that launch AutoML jobs on VertexAI.
- property extra_links_params: dict[str, Any][source]¶
Override this method to include parameters for link formatting in extra links.
For example; most of the links on the Google provider require project_id and location in the Link. To be not repeat; you can override this function and return something like the following:
{ "project_id": self.project_id, "location": self.location, }
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLForecastingTrainingJobOperator(*, dataset_id, target_column, time_column, time_series_identifier_column, unavailable_at_forecast_columns, available_at_forecast_columns, forecast_horizon, data_granularity_unit, data_granularity_count, display_name, model_display_name=None, optimization_objective=None, column_specs=None, column_transformations=None, validation_fraction_split=None, predefined_split_column_name=None, weight_column=None, time_series_attribute_columns=None, context_window=None, export_evaluated_data_items=False, export_evaluated_data_items_bigquery_destination_uri=None, export_evaluated_data_items_override_destination=False, quantiles=None, validation_options=None, budget_milli_node_hours=1000, region, impersonation_chain=None, parent_model=None, window_stride_length=None, window_max_count=None, holiday_regions=None, **kwargs)[source]¶
Bases:
AutoMLTrainingJobBaseOperator
Create AutoML Forecasting Training job.
- template_fields = ('parent_model', 'dataset_id', 'region', 'impersonation_chain', 'display_name', 'model_display_name')[source]¶
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLImageTrainingJobOperator(*, dataset_id, prediction_type='classification', multi_label=False, model_type='CLOUD', base_model=None, validation_fraction_split=None, training_filter_split=None, validation_filter_split=None, test_filter_split=None, budget_milli_node_hours=None, disable_early_stopping=False, region, impersonation_chain=None, parent_model=None, **kwargs)[source]¶
Bases:
AutoMLTrainingJobBaseOperator
Create Auto ML Image Training job.
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLTabularTrainingJobOperator(*, dataset_id, target_column, optimization_prediction_type, optimization_objective=None, column_specs=None, column_transformations=None, optimization_objective_recall_value=None, optimization_objective_precision_value=None, validation_fraction_split=None, predefined_split_column_name=None, timestamp_split_column_name=None, weight_column=None, budget_milli_node_hours=1000, disable_early_stopping=False, export_evaluated_data_items=False, export_evaluated_data_items_bigquery_destination_uri=None, export_evaluated_data_items_override_destination=False, region, impersonation_chain=None, parent_model=None, **kwargs)[source]¶
Bases:
AutoMLTrainingJobBaseOperator
Create Auto ML Tabular Training job.
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.CreateAutoMLVideoTrainingJobOperator(*, dataset_id, prediction_type='classification', model_type='CLOUD', training_filter_split=None, test_filter_split=None, region, impersonation_chain=None, parent_model=None, **kwargs)[source]¶
Bases:
AutoMLTrainingJobBaseOperator
Create Auto ML Video Training job.
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.DeleteAutoMLTrainingJobOperator(*, training_pipeline_id, region, project_id, retry=DEFAULT, timeout=None, metadata=(), gcp_conn_id='google_cloud_default', impersonation_chain=None, **kwargs)[source]¶
Bases:
airflow.providers.google.cloud.operators.cloud_base.GoogleCloudBaseOperator
Delete an AutoML training job.
Can be used with AutoMLForecastingTrainingJob, AutoMLImageTrainingJob, AutoMLTabularTrainingJob, AutoMLTextTrainingJob, or AutoMLVideoTrainingJob.
- class airflow.providers.google.cloud.operators.vertex_ai.auto_ml.ListAutoMLTrainingJobOperator(*, region, project_id, page_size=None, page_token=None, filter=None, read_mask=None, retry=DEFAULT, timeout=None, metadata=(), gcp_conn_id='google_cloud_default', impersonation_chain=None, **kwargs)[source]¶
Bases:
airflow.providers.google.cloud.operators.cloud_base.GoogleCloudBaseOperator
List an AutoML training job.
Can be used with AutoMLForecastingTrainingJob, AutoMLImageTrainingJob, AutoMLTabularTrainingJob, AutoMLTextTrainingJob, or AutoMLVideoTrainingJob in a Location.
- property extra_links_params: dict[str, Any][source]¶
Override this method to include parameters for link formatting in extra links.
For example; most of the links on the Google provider require project_id and location in the Link. To be not repeat; you can override this function and return something like the following:
{ "project_id": self.project_id, "location": self.location, }