Source code for tests.system.google.cloud.vertex_ai.example_vertex_ai_generative_model_tuning
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Vertex AI Generative Model Tuning Tasks.
"""
from __future__ import annotations
import os
from datetime import datetime
import requests
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.vertex_ai.generative_model import (
SupervisedFineTuningTrainOperator,
)
[docs]
def get_actual_model() -> str:
source_model: str | None = None
try:
response = requests.get(
"https://generativelanguage.googleapis.com/v1/models", {"key": GEMINI_API_KEY}
)
response.raise_for_status()
available_models = response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching models from API: {e}")
return ""
for model in available_models.get("models", []):
try:
model_name = model["name"].split("/")[-1]
splited_model_name = model_name.split("-")
if not splited_model_name[-1].isdigit():
# We are not using model aliases because sometimes it is not guaranteed to work
continue
if not source_model and "flash" in model_name:
source_model = model_name
elif (
source_model
and "flash" in model_name
and float(source_model.split("-")[1]) < float(splited_model_name[1])
):
source_model = model_name
elif (
source_model
and "flash" in model_name
and (
float(source_model.split("-")[1]) == float(splited_model_name[1])
and int(splited_model_name[-1]) > int(source_model.split("-")[-1])
)
):
source_model = model_name
except (ValueError, IndexError) as e:
print(f"Could not parse model name '{model.get('name')}'. Skipping. Error: {e}")
continue
if not source_model:
raise ValueError("Source model not found")
return source_model
[docs]
PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]
DAG_ID = "vertex_ai_generative_model_tuning_dag"
[docs]
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
[docs]
SOURCE_MODEL = get_actual_model()
[docs]
TRAIN_DATASET = "gs://cloud-samples-data/ai-platform/generative_ai/gemini-2_0/text/sft_train_data.jsonl"
[docs]
TUNED_MODEL_DISPLAY_NAME = "my_tuned_gemini_model"
with DAG(
dag_id=DAG_ID,
description="Sample DAG with generative model tuning tasks.",
schedule="@once",
start_date=datetime(2024, 1, 1),
catchup=False,
tags=["example", "vertex_ai", "generative_model"],
) as dag:
# [START how_to_cloud_vertex_ai_supervised_fine_tuning_train_operator]
[docs]
sft_train_task = SupervisedFineTuningTrainOperator(
task_id="sft_train_task",
project_id=PROJECT_ID,
location=REGION,
source_model=SOURCE_MODEL,
train_dataset=TRAIN_DATASET,
tuned_model_display_name=TUNED_MODEL_DISPLAY_NAME,
)
# [END how_to_cloud_vertex_ai_supervised_fine_tuning_train_operator]
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]
test_run = get_test_run(dag)