Airflow Summit 2025 is coming October 07-09. Register now for early bird ticket!

Source code for tests.system.google.cloud.vertex_ai.example_vertex_ai_generative_model_tuning

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Example Airflow DAG for Google Vertex AI Generative Model Tuning Tasks.
"""

from __future__ import annotations

import os
from datetime import datetime

import requests

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.vertex_ai.generative_model import (
    SupervisedFineTuningTrainOperator,
)


[docs] def get_actual_model() -> str: source_model: str | None = None try: response = requests.get( "https://generativelanguage.googleapis.com/v1/models", {"key": GEMINI_API_KEY} ) response.raise_for_status() available_models = response.json() except requests.exceptions.RequestException as e: print(f"Error fetching models from API: {e}") return "" for model in available_models.get("models", []): try: model_name = model["name"].split("/")[-1] splited_model_name = model_name.split("-") if not splited_model_name[-1].isdigit(): # We are not using model aliases because sometimes it is not guaranteed to work continue if not source_model and "flash" in model_name: source_model = model_name elif ( source_model and "flash" in model_name and float(source_model.split("-")[1]) < float(splited_model_name[1]) ): source_model = model_name elif ( source_model and "flash" in model_name and ( float(source_model.split("-")[1]) == float(splited_model_name[1]) and int(splited_model_name[-1]) > int(source_model.split("-")[-1]) ) ): source_model = model_name except (ValueError, IndexError) as e: print(f"Could not parse model name '{model.get('name')}'. Skipping. Error: {e}") continue if not source_model: raise ValueError("Source model not found") return source_model
[docs] PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs] DAG_ID = "vertex_ai_generative_model_tuning_dag"
[docs] REGION = "us-central1"
[docs] GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
[docs] SOURCE_MODEL = get_actual_model()
[docs] TRAIN_DATASET = "gs://cloud-samples-data/ai-platform/generative_ai/gemini-2_0/text/sft_train_data.jsonl"
[docs] TUNED_MODEL_DISPLAY_NAME = "my_tuned_gemini_model"
with DAG( dag_id=DAG_ID, description="Sample DAG with generative model tuning tasks.", schedule="@once", start_date=datetime(2024, 1, 1), catchup=False, tags=["example", "vertex_ai", "generative_model"], ) as dag: # [START how_to_cloud_vertex_ai_supervised_fine_tuning_train_operator]
[docs] sft_train_task = SupervisedFineTuningTrainOperator( task_id="sft_train_task", project_id=PROJECT_ID, location=REGION, source_model=SOURCE_MODEL, train_dataset=TRAIN_DATASET, tuned_model_display_name=TUNED_MODEL_DISPLAY_NAME, )
# [END how_to_cloud_vertex_ai_supervised_fine_tuning_train_operator] from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs] test_run = get_test_run(dag)

Was this entry helpful?