Source code for airflow.providers.google.cloud.openlineage.utils
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License.from__future__importannotationsfromtypingimportTYPE_CHECKING,Anyfromattrimportdefine,fieldifTYPE_CHECKING:fromgoogle.cloud.bigquery.tableimportTablefromairflow.providers.common.compat.openlineage.facetimportDatasetfromairflow.providers.common.compat.openlineage.facetimport(BaseFacet,ColumnLineageDatasetFacet,DocumentationDatasetFacet,Fields,InputField,RunFacet,SchemaDatasetFacet,SchemaDatasetFacetFields,)fromairflow.providers.googleimport__version__asprovider_version
[docs]defget_facets_from_bq_table(table:Table)->dict[str,BaseFacet]:"""Get facets from BigQuery table object."""facets:dict[str,BaseFacet]={}iftable.schema:facets["schema"]=SchemaDatasetFacet(fields=[SchemaDatasetFacetFields(name=schema_field.name,type=schema_field.field_type,description=schema_field.description)forschema_fieldintable.schema])iftable.description:facets["documentation"]=DocumentationDatasetFacet(description=table.description)returnfacets
[docs]defget_identity_column_lineage_facet(dest_field_names:list[str],input_datasets:list[Dataset],)->dict[str,ColumnLineageDatasetFacet]:""" Get column lineage facet for identity transformations. This function generates a simple column lineage facet, where each destination column consists of source columns of the same name from all input datasets that have that column. The lineage assumes there are no transformations applied, meaning the columns retain their identity between the source and destination datasets. Args: dest_field_names: A list of destination column names for which lineage should be determined. input_datasets: A list of input datasets with schema facets. Returns: A dictionary containing a single key, `columnLineage`, mapped to a `ColumnLineageDatasetFacet`. If no column lineage can be determined, an empty dictionary is returned - see Notes below. Notes: - If any input dataset lacks a schema facet, the function immediately returns an empty dictionary. - If any field in the source dataset's schema is not present in the destination table, the function returns an empty dictionary. The destination table can contain extra fields, but all source columns should be present in the destination table. - If none of the destination columns can be matched to input dataset columns, an empty dictionary is returned. - Extra columns in the destination table that do not exist in the input datasets are ignored and skipped in the lineage facet, as they cannot be traced back to a source column. - The function assumes there are no transformations applied, meaning the columns retain their identity between the source and destination datasets. """fields_sources:dict[str,list[Dataset]]={}fordsininput_datasets:ifnotds.facetsor"schema"notinds.facets:return{}forschema_fieldinds.facets["schema"].fields:# type: ignore[attr-defined]ifschema_field.namenotindest_field_names:return{}fields_sources[schema_field.name]=fields_sources.get(schema_field.name,[])+[ds]ifnotfields_sources:return{}column_lineage_facet=ColumnLineageDatasetFacet(fields={field_name:Fields(inputFields=[InputField(namespace=dataset.namespace,name=dataset.name,field=field_name)fordatasetinsource_datasets],transformationType="IDENTITY",transformationDescription="identical",)forfield_name,source_datasetsinfields_sources.items()})return{"columnLineage":column_lineage_facet}
@define
[docs]classBigQueryJobRunFacet(RunFacet):""" Facet that represents relevant statistics of bigquery run. This facet is used to provide statistics about bigquery run. :param cached: BigQuery caches query results. Rest of the statistics will not be provided for cached queries. :param billedBytes: How many bytes BigQuery bills for. :param properties: Full property tree of BigQUery run. """
# TODO: remove BigQueryErrorRunFacet in next release@define
[docs]classBigQueryErrorRunFacet(RunFacet):""" Represents errors that can happen during execution of BigqueryExtractor. :param clientError: represents errors originating in bigquery client :param parserError: represents errors that happened during parsing SQL provided to bigquery """
[docs]defget_from_nullable_chain(source:Any,chain:list[str])->Any|None:""" Get object from nested structure of objects, where it's not guaranteed that all keys in the nested structure exist. Intended to replace chain of `dict.get()` statements. Example usage: .. code-block:: python if ( not job._properties.get("statistics") or not job._properties.get("statistics").get("query") or not job._properties.get("statistics").get("query").get("referencedTables") ): return None result = job._properties.get("statistics").get("query").get("referencedTables") becomes: .. code-block:: python result = get_from_nullable_chain(properties, ["statistics", "query", "queryPlan"]) if not result: return None """# chain.pop modifies passed list, this can be unexpectedchain=chain.copy()chain.reverse()try:whilechain:whileisinstance(source,list)andlen(source)==1:source=source[0]next_key=chain.pop()ifisinstance(source,dict):source=source.get(next_key)else:source=getattr(source,next_key)returnsourceexceptAttributeError:returnNone