Source code for tests.system.providers.google.cloud.dataprep.example_dataprep

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that shows how to use Google Dataprep.
"""
from __future__ import annotations

import os
from datetime import datetime

from airflow import models
from airflow.providers.google.cloud.operators.dataprep import (
    DataprepCopyFlowOperator,
    DataprepDeleteFlowOperator,
    DataprepGetJobGroupOperator,
    DataprepGetJobsForJobGroupOperator,
    DataprepRunFlowOperator,
    DataprepRunJobGroupOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.sensors.dataprep import DataprepJobGroupIsFinishedSensor
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "example_dataprep"
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT")
[docs]GCS_BUCKET_NAME = f"dataprep-bucket-{DAG_ID}-{ENV_ID}"
[docs]GCS_BUCKET_PATH = f"gs://{GCS_BUCKET_NAME}/task_results/"
[docs]FLOW_ID = os.environ.get("FLOW_ID")
[docs]RECIPE_ID = os.environ.get("RECIPE_ID")
[docs]RECIPE_NAME = os.environ.get("RECIPE_NAME")
[docs]WRITE_SETTINGS = ( { "writesettings": [ { "path": GCS_BUCKET_PATH, "action": "create", "format": "csv", } ], }, )
with models.DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), # Override to match your needs catchup=False, tags=["example", "dataprep"], render_template_as_native_obj=True, ) as dag:
[docs] create_bucket_task = GCSCreateBucketOperator( task_id="create_bucket", bucket_name=GCS_BUCKET_NAME, project_id=GCP_PROJECT_ID, )
# [START how_to_dataprep_run_job_group_operator] run_job_group_task = DataprepRunJobGroupOperator( task_id="run_job_group", project_id=GCP_PROJECT_ID, body_request={ "wrangledDataset": {"id": RECIPE_ID}, "overrides": WRITE_SETTINGS, }, ) # [END how_to_dataprep_run_job_group_operator] # [START how_to_dataprep_copy_flow_operator] copy_task = DataprepCopyFlowOperator( task_id="copy_flow", project_id=GCP_PROJECT_ID, flow_id=FLOW_ID, name=f"dataprep_example_flow_{DAG_ID}_{ENV_ID}", ) # [END how_to_dataprep_copy_flow_operator] # [START how_to_dataprep_dataprep_run_flow_operator] run_flow_task = DataprepRunFlowOperator( task_id="run_flow", project_id=GCP_PROJECT_ID, flow_id="{{ task_instance.xcom_pull('copy_flow')['id'] }}", body_request={ "overrides": { RECIPE_NAME: WRITE_SETTINGS, }, }, ) # [END how_to_dataprep_dataprep_run_flow_operator] # [START how_to_dataprep_get_job_group_operator] get_job_group_task = DataprepGetJobGroupOperator( task_id="get_job_group", project_id=GCP_PROJECT_ID, job_group_id="{{ task_instance.xcom_pull('run_flow')['data'][0]['id'] }}", embed="", include_deleted=False, ) # [END how_to_dataprep_get_job_group_operator] # [START how_to_dataprep_get_jobs_for_job_group_operator] get_jobs_for_job_group_task = DataprepGetJobsForJobGroupOperator( task_id="get_jobs_for_job_group", job_group_id="{{ task_instance.xcom_pull('run_flow')['data'][0]['id'] }}", ) # [END how_to_dataprep_get_jobs_for_job_group_operator] # [START how_to_dataprep_job_group_finished_sensor] check_flow_status_sensor = DataprepJobGroupIsFinishedSensor( task_id="check_flow_status", job_group_id="{{ task_instance.xcom_pull('run_flow')['data'][0]['id'] }}", ) # [END how_to_dataprep_job_group_finished_sensor] # [START how_to_dataprep_job_group_finished_sensor] check_job_group_status_sensor = DataprepJobGroupIsFinishedSensor( task_id="check_job_group_status", job_group_id="{{ task_instance.xcom_pull('run_job_group')['id'] }}", ) # [END how_to_dataprep_job_group_finished_sensor] # [START how_to_dataprep_delete_flow_operator] delete_flow_task = DataprepDeleteFlowOperator( task_id="delete_flow", flow_id="{{ task_instance.xcom_pull('copy_flow')['id'] }}", ) # [END how_to_dataprep_delete_flow_operator] delete_flow_task.trigger_rule = TriggerRule.ALL_DONE delete_bucket_task = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=GCS_BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP create_bucket_task >> copy_task # TEST BODY >> [run_job_group_task, run_flow_task] >> get_job_group_task >> get_jobs_for_job_group_task # TEST TEARDOWN >> check_flow_status_sensor >> [delete_flow_task, check_job_group_status_sensor] >> delete_bucket_task ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?