# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that shows how to use Dataplex Scan Data.
"""
from __future__ import annotations
import os
from datetime import datetime
from google.cloud import dataplex_v1
from google.protobuf.field_mask_pb2 import FieldMask
from airflow import models
from airflow.models.baseoperator import chain
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateEmptyTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.operators.dataplex import (
DataplexCreateAssetOperator,
DataplexCreateLakeOperator,
DataplexCreateOrUpdateDataQualityScanOperator,
DataplexCreateZoneOperator,
DataplexDeleteAssetOperator,
DataplexDeleteDataQualityScanOperator,
DataplexDeleteLakeOperator,
DataplexDeleteZoneOperator,
DataplexGetDataQualityScanOperator,
DataplexGetDataQualityScanResultOperator,
DataplexRunDataQualityScanOperator,
)
from airflow.providers.google.cloud.sensors.dataplex import DataplexDataQualityJobStatusSensor
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT")
[docs]DAG_ID = "example_dataplex_data_quality"
[docs]LAKE_ID = f"test-lake-{ENV_ID}"
[docs]DATASET_NAME = f"dataset_bq_{ENV_ID}"
[docs]SCHEMA = [
{"name": "value", "type": "INTEGER", "mode": "REQUIRED"},
{"name": "name", "type": "STRING", "mode": "NULLABLE"},
{"name": "dt", "type": "STRING", "mode": "NULLABLE"},
]
[docs]INSERT_DATE = datetime.now().strftime("%Y-%m-%d")
[docs]INSERT_ROWS_QUERY = f"INSERT {DATASET}.{TABLE_1} VALUES (1, 'test test2', '{INSERT_DATE}');"
[docs]TRIGGER_SPEC_TYPE = "ON_DEMAND"
[docs]ZONE_ID = "test-zone-id"
[docs]DATA_SCAN_ID = "test-data-scan-id"
[docs]EXAMPLE_LAKE_BODY = {
"display_name": "test_display_name",
"labels": [],
"description": "test_description",
"metastore": {"service": ""},
}
# [START howto_dataplex_zone_configuration]
[docs]EXAMPLE_ZONE = {
"type_": "RAW",
"resource_spec": {"location_type": "SINGLE_REGION"},
}
# [END howto_dataplex_zone_configuration]
[docs]ASSET_ID = "test-asset-id"
# [START howto_dataplex_asset_configuration]
[docs]EXAMPLE_ASSET = {
"resource_spec": {"name": f"projects/{PROJECT_ID}/datasets/{DATASET_NAME}", "type_": "BIGQUERY_DATASET"},
"discovery_spec": {"enabled": True},
}
# [END howto_dataplex_asset_configuration]
# [START howto_dataplex_data_quality_configuration]
[docs]EXAMPLE_DATA_SCAN = dataplex_v1.DataScan()
EXAMPLE_DATA_SCAN.data.entity = (
f"projects/{PROJECT_ID}/locations/{REGION}/lakes/{LAKE_ID}/zones/{ZONE_ID}/entities/{TABLE_1}"
)
EXAMPLE_DATA_SCAN.data.resource = (
f"//bigquery.googleapis.com/projects/{PROJECT_ID}/datasets/{DATASET}/tables/{TABLE_1}"
)
EXAMPLE_DATA_SCAN.data_quality_spec = {
"rules": [
{
"range_expectation": {
"min_value": "0",
"max_value": "10000",
},
"column": "value",
"dimension": "VALIDITY",
}
],
}
# [END howto_dataplex_data_quality_configuration]
[docs]UPDATE_MASK = FieldMask(paths=["data_quality_spec"])
[docs]ENTITY = f"projects/{PROJECT_ID}/locations/{REGION}/lakes/{LAKE_ID}/zones/{ZONE_ID}/entities/{TABLE_1}"
[docs]EXAMPLE_DATA_SCAN_UPDATE = {
"data": {
"entity": ENTITY,
"resource": f"//bigquery.googleapis.com/projects/{PROJECT_ID}/datasets/{DATASET}/tables/{TABLE_1}",
},
"data_quality_spec": {
"rules": [
{
"range_expectation": {
"min_value": "1",
"max_value": "50000",
},
"column": "value",
"dimension": "VALIDITY",
}
],
},
}
with models.DAG(
DAG_ID,
start_date=datetime(2021, 1, 1),
schedule="@once",
tags=["example", "dataplex", "data_quality"],
) as dag:
[docs] create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create_dataset", dataset_id=DATASET_NAME)
create_table_1 = BigQueryCreateEmptyTableOperator(
task_id="create_table_1",
dataset_id=DATASET_NAME,
table_id=TABLE_1,
schema_fields=SCHEMA,
location=LOCATION,
)
create_table_2 = BigQueryCreateEmptyTableOperator(
task_id="create_table_2",
dataset_id=DATASET_NAME,
table_id=TABLE_2,
schema_fields=SCHEMA,
location=LOCATION,
)
insert_query_job = BigQueryInsertJobOperator(
task_id="insert_query_job",
configuration={
"query": {
"query": INSERT_ROWS_QUERY,
"useLegacySql": False,
}
},
)
create_lake = DataplexCreateLakeOperator(
task_id="create_lake", project_id=PROJECT_ID, region=REGION, body=EXAMPLE_LAKE_BODY, lake_id=LAKE_ID
)
# [START howto_dataplex_create_zone_operator]
create_zone = DataplexCreateZoneOperator(
task_id="create_zone",
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
body=EXAMPLE_ZONE,
zone_id=ZONE_ID,
)
# [END howto_dataplex_create_zone_operator]
# [START howto_dataplex_create_asset_operator]
create_asset = DataplexCreateAssetOperator(
task_id="create_asset",
project_id=PROJECT_ID,
region=REGION,
body=EXAMPLE_ASSET,
lake_id=LAKE_ID,
zone_id=ZONE_ID,
asset_id=ASSET_ID,
)
# [END howto_dataplex_create_asset_operator]
# [START howto_dataplex_create_data_quality_operator]
create_data_scan = DataplexCreateOrUpdateDataQualityScanOperator(
task_id="create_data_scan",
project_id=PROJECT_ID,
region=REGION,
body=EXAMPLE_DATA_SCAN,
data_scan_id=DATA_SCAN_ID,
)
# [END howto_dataplex_create_data_quality_operator]
update_data_scan = DataplexCreateOrUpdateDataQualityScanOperator(
task_id="update_data_scan",
project_id=PROJECT_ID,
region=REGION,
update_mask=UPDATE_MASK,
body=EXAMPLE_DATA_SCAN_UPDATE,
data_scan_id=DATA_SCAN_ID,
)
# [START howto_dataplex_get_data_quality_operator]
get_data_scan = DataplexGetDataQualityScanOperator(
task_id="get_data_scan",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
# [END howto_dataplex_get_data_quality_operator]
run_data_scan_sync = DataplexRunDataQualityScanOperator(
task_id="run_data_scan_sync",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
get_data_scan_job_result = DataplexGetDataQualityScanResultOperator(
task_id="get_data_scan_job_result",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
# [START howto_dataplex_run_data_quality_operator]
run_data_scan_async = DataplexRunDataQualityScanOperator(
task_id="run_data_scan_async",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
asynchronous=True,
)
# [END howto_dataplex_run_data_quality_operator]
# [START howto_dataplex_data_scan_job_state_sensor]
get_data_scan_job_status = DataplexDataQualityJobStatusSensor(
task_id="get_data_scan_job_status",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
job_id="{{ task_instance.xcom_pull('run_data_scan_async') }}",
)
# [END howto_dataplex_data_scan_job_state_sensor]
# [START howto_dataplex_get_data_quality_job_operator]
get_data_scan_job_result_2 = DataplexGetDataQualityScanResultOperator(
task_id="get_data_scan_job_result_2",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
# [END howto_dataplex_get_data_quality_job_operator]
# [START howto_dataplex_delete_asset_operator]
delete_asset = DataplexDeleteAssetOperator(
task_id="delete_asset",
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
zone_id=ZONE_ID,
asset_id=ASSET_ID,
)
# [END howto_dataplex_delete_asset_operator]
delete_asset.trigger_rule = TriggerRule.ALL_DONE
# [START howto_dataplex_delete_zone_operator]
delete_zone = DataplexDeleteZoneOperator(
task_id="delete_zone",
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
zone_id=ZONE_ID,
)
# [END howto_dataplex_delete_zone_operator]
delete_zone.trigger_rule = TriggerRule.ALL_DONE
# [START howto_dataplex_delete_data_quality_operator]
delete_data_scan = DataplexDeleteDataQualityScanOperator(
task_id="delete_data_scan",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
# [END howto_dataplex_delete_data_quality_operator]
delete_data_scan.trigger_rule = TriggerRule.ALL_DONE
delete_lake = DataplexDeleteLakeOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
task_id="delete_lake",
trigger_rule=TriggerRule.ALL_DONE,
)
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset",
dataset_id=DATASET_NAME,
project_id=PROJECT_ID,
delete_contents=True,
trigger_rule=TriggerRule.ALL_DONE,
)
chain(
# TEST SETUP
create_dataset,
[create_table_1, create_table_2],
insert_query_job,
create_lake,
create_zone,
create_asset,
# TEST BODY
create_data_scan,
update_data_scan,
get_data_scan,
run_data_scan_sync,
get_data_scan_job_result,
run_data_scan_async,
get_data_scan_job_status,
get_data_scan_job_result_2,
# TEST TEARDOWN
delete_asset,
delete_zone,
delete_data_scan,
[delete_lake, delete_dataset],
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)