#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""
from __future__ import annotations
import os
from datetime import datetime
from typing import cast
from airflow import models
from airflow.models.xcom_arg import XComArg
from airflow.providers.google.cloud.hooks.automl import CloudAutoMLHook
from airflow.providers.google.cloud.operators.automl import (
AutoMLCreateDatasetOperator,
AutoMLDeleteDatasetOperator,
AutoMLDeleteModelOperator,
AutoMLImportDataOperator,
AutoMLTrainModelOperator,
)
[docs]GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "your-project-id")
[docs]GCP_AUTOML_LOCATION = os.environ.get("GCP_AUTOML_LOCATION", "us-central1")
[docs]GCP_AUTOML_TRANSLATION_BUCKET = os.environ.get(
"GCP_AUTOML_TRANSLATION_BUCKET", "gs://INVALID BUCKET NAME/file"
)
# Example model
[docs]MODEL = {
"display_name": "auto_model_1",
"translation_model_metadata": {},
}
# Example dataset
[docs]DATASET = {
"display_name": "test_translation_dataset",
"translation_dataset_metadata": {
"source_language_code": "en",
"target_language_code": "es",
},
}
# Example DAG for AutoML Translation
with models.DAG(
"example_automl_translation",
start_date=datetime(2021, 1, 1),
schedule="@once",
catchup=False,
user_defined_macros={"extract_object_id": extract_object_id},
tags=["example"],
) as dag:
[docs] create_dataset_task = AutoMLCreateDatasetOperator(
task_id="create_dataset_task", dataset=DATASET, location=GCP_AUTOML_LOCATION
)
dataset_id = cast(str, XComArg(create_dataset_task, key="dataset_id"))
import_dataset_task = AutoMLImportDataOperator(
task_id="import_dataset_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
input_config=IMPORT_INPUT_CONFIG,
)
MODEL["dataset_id"] = dataset_id
create_model = AutoMLTrainModelOperator(task_id="create_model", model=MODEL, location=GCP_AUTOML_LOCATION)
model_id = cast(str, XComArg(create_model, key="model_id"))
delete_model_task = AutoMLDeleteModelOperator(
task_id="delete_model_task",
model_id=model_id,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
delete_datasets_task = AutoMLDeleteDatasetOperator(
task_id="delete_datasets_task",
dataset_id=dataset_id,
location=GCP_AUTOML_LOCATION,
project_id=GCP_PROJECT_ID,
)
# TEST BODY
import_dataset_task >> create_model
# TEST TEARDOWN
delete_model_task >> delete_datasets_task
# Task dependencies created via `XComArgs`:
# create_dataset_task >> import_dataset_task
# create_dataset_task >> create_model
# create_model >> delete_model_task
# create_dataset_task >> delete_datasets_task
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)