Source code for tests.system.providers.google.cloud.automl.example_automl_translation

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""
from __future__ import annotations

import os
from datetime import datetime
from typing import cast

from airflow import models
from airflow.models.xcom_arg import XComArg
from airflow.providers.google.cloud.hooks.automl import CloudAutoMLHook
from airflow.providers.google.cloud.operators.automl import (
    AutoMLCreateDatasetOperator,
    AutoMLDeleteDatasetOperator,
    AutoMLDeleteModelOperator,
    AutoMLImportDataOperator,
    AutoMLTrainModelOperator,
)

[docs]GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "your-project-id")
[docs]GCP_AUTOML_LOCATION = os.environ.get("GCP_AUTOML_LOCATION", "us-central1")
[docs]GCP_AUTOML_TRANSLATION_BUCKET = os.environ.get( "GCP_AUTOML_TRANSLATION_BUCKET", "gs://INVALID BUCKET NAME/file" )
# Example model
[docs]MODEL = { "display_name": "auto_model_1", "translation_model_metadata": {}, }
# Example dataset
[docs]DATASET = { "display_name": "test_translation_dataset", "translation_dataset_metadata": { "source_language_code": "en", "target_language_code": "es", }, }
[docs]IMPORT_INPUT_CONFIG = {"gcs_source": {"input_uris": [GCP_AUTOML_TRANSLATION_BUCKET]}}
[docs]extract_object_id = CloudAutoMLHook.extract_object_id
# Example DAG for AutoML Translation with models.DAG( "example_automl_translation", start_date=datetime(2021, 1, 1), schedule="@once", catchup=False, user_defined_macros={"extract_object_id": extract_object_id}, tags=["example"], ) as dag:
[docs] create_dataset_task = AutoMLCreateDatasetOperator( task_id="create_dataset_task", dataset=DATASET, location=GCP_AUTOML_LOCATION )
dataset_id = cast(str, XComArg(create_dataset_task, key="dataset_id")) import_dataset_task = AutoMLImportDataOperator( task_id="import_dataset_task", dataset_id=dataset_id, location=GCP_AUTOML_LOCATION, input_config=IMPORT_INPUT_CONFIG, ) MODEL["dataset_id"] = dataset_id create_model = AutoMLTrainModelOperator(task_id="create_model", model=MODEL, location=GCP_AUTOML_LOCATION) model_id = cast(str, XComArg(create_model, key="model_id")) delete_model_task = AutoMLDeleteModelOperator( task_id="delete_model_task", model_id=model_id, location=GCP_AUTOML_LOCATION, project_id=GCP_PROJECT_ID, ) delete_datasets_task = AutoMLDeleteDatasetOperator( task_id="delete_datasets_task", dataset_id=dataset_id, location=GCP_AUTOML_LOCATION, project_id=GCP_PROJECT_ID, ) # TEST BODY import_dataset_task >> create_model # TEST TEARDOWN delete_model_task >> delete_datasets_task # Task dependencies created via `XComArgs`: # create_dataset_task >> import_dataset_task # create_dataset_task >> create_model # create_model >> delete_model_task # create_dataset_task >> delete_datasets_task from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?