#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example DAG using TrinoToGCSOperator.
"""
from __future__ import annotations
import os
import re
from datetime import datetime
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.bigquery import (
BigQueryCreateEmptyDatasetOperator,
BigQueryCreateExternalTableOperator,
BigQueryDeleteDatasetOperator,
BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.transfers.trino_to_gcs import TrinoToGCSOperator
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "example_trino_to_gcs"
[docs]GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project")
[docs]GCS_BUCKET = f"bucket_{DAG_ID}_{ENV_ID}"
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
[docs]SOURCE_SCHEMA_COLUMNS = "memory.information_schema.columns"
[docs]SOURCE_CUSTOMER_TABLE = "tpch.sf1.customer"
[docs]def safe_name(s: str) -> str:
"""
Remove invalid characters for filename
"""
return re.sub("[^0-9a-zA-Z_]+", "_", s)
with DAG(
dag_id=DAG_ID,
schedule="@once", # Override to match your needs
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "gcs"],
) as dag:
[docs] create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create-dataset", dataset_id=DATASET_NAME)
delete_dataset = BigQueryDeleteDatasetOperator(
task_id="delete_dataset",
dataset_id=DATASET_NAME,
delete_contents=True,
trigger_rule=TriggerRule.ALL_DONE,
)
create_bucket = GCSCreateBucketOperator(task_id="create_bucket", bucket_name=GCS_BUCKET)
delete_bucket = GCSDeleteBucketOperator(task_id="delete_bucket", bucket_name=GCS_BUCKET)
# [START howto_operator_trino_to_gcs_basic]
trino_to_gcs_basic = TrinoToGCSOperator(
task_id="trino_to_gcs_basic",
sql=f"select * from {SOURCE_SCHEMA_COLUMNS}",
bucket=GCS_BUCKET,
filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.{{}}.json",
)
# [END howto_operator_trino_to_gcs_basic]
# [START howto_operator_trino_to_gcs_multiple_types]
trino_to_gcs_multiple_types = TrinoToGCSOperator(
task_id="trino_to_gcs_multiple_types",
sql=f"select * from {SOURCE_SCHEMA_COLUMNS}",
bucket=GCS_BUCKET,
filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.{{}}.json",
schema_filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}-schema.json",
gzip=False,
)
# [END howto_operator_trino_to_gcs_multiple_types]
# [START howto_operator_create_external_table_multiple_types]
create_external_table_multiple_types = BigQueryCreateExternalTableOperator(
task_id="create_external_table_multiple_types",
bucket=GCS_BUCKET,
table_resource={
"tableReference": {
"projectId": GCP_PROJECT_ID,
"datasetId": DATASET_NAME,
"tableId": f"{safe_name(SOURCE_SCHEMA_COLUMNS)}",
},
"schema": {
"fields": [
{"name": "table_catalog", "type": "STRING"},
{"name": "table_schema", "type": "STRING"},
{"name": "table_name", "type": "STRING"},
{"name": "column_name", "type": "STRING"},
{"name": "ordinal_position", "type": "INT64"},
{"name": "column_default", "type": "STRING"},
{"name": "is_nullable", "type": "STRING"},
{"name": "data_type", "type": "STRING"},
],
},
"externalDataConfiguration": {
"sourceFormat": "NEWLINE_DELIMITED_JSON",
"compression": "NONE",
"sourceUris": [f"gs://{GCS_BUCKET}/{safe_name(SOURCE_SCHEMA_COLUMNS)}.*.json"],
},
},
source_objects=[f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.*.json"],
schema_object=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}-schema.json",
)
# [END howto_operator_create_external_table_multiple_types]
read_data_from_gcs_multiple_types = BigQueryInsertJobOperator(
task_id="read_data_from_gcs_multiple_types",
configuration={
"query": {
"query": f"SELECT COUNT(*) FROM `{GCP_PROJECT_ID}.{DATASET_NAME}."
f"{safe_name(SOURCE_SCHEMA_COLUMNS)}`",
"useLegacySql": False,
}
},
)
# [START howto_operator_trino_to_gcs_many_chunks]
trino_to_gcs_many_chunks = TrinoToGCSOperator(
task_id="trino_to_gcs_many_chunks",
sql=f"select * from {SOURCE_CUSTOMER_TABLE}",
bucket=GCS_BUCKET,
filename=f"{safe_name(SOURCE_CUSTOMER_TABLE)}.{{}}.json",
schema_filename=f"{safe_name(SOURCE_CUSTOMER_TABLE)}-schema.json",
approx_max_file_size_bytes=10_000_000,
gzip=False,
)
# [END howto_operator_trino_to_gcs_many_chunks]
create_external_table_many_chunks = BigQueryCreateExternalTableOperator(
task_id="create_external_table_many_chunks",
bucket=GCS_BUCKET,
table_resource={
"tableReference": {
"projectId": GCP_PROJECT_ID,
"datasetId": DATASET_NAME,
"tableId": f"{safe_name(SOURCE_CUSTOMER_TABLE)}",
},
"schema": {
"fields": [
{"name": "custkey", "type": "INT64"},
{"name": "name", "type": "STRING"},
{"name": "address", "type": "STRING"},
{"name": "nationkey", "type": "INT64"},
{"name": "phone", "type": "STRING"},
{"name": "acctbal", "type": "FLOAT64"},
{"name": "mktsegment", "type": "STRING"},
{"name": "comment", "type": "STRING"},
]
},
"externalDataConfiguration": {
"sourceFormat": "NEWLINE_DELIMITED_JSON",
"compression": "NONE",
"sourceUris": [f"gs://{GCS_BUCKET}/{safe_name(SOURCE_CUSTOMER_TABLE)}.*.json"],
},
},
source_objects=[f"{safe_name(SOURCE_CUSTOMER_TABLE)}.*.json"],
schema_object=f"{safe_name(SOURCE_CUSTOMER_TABLE)}-schema.json",
)
# [START howto_operator_read_data_from_gcs_many_chunks]
read_data_from_gcs_many_chunks = BigQueryInsertJobOperator(
task_id="read_data_from_gcs_many_chunks",
configuration={
"query": {
"query": f"SELECT COUNT(*) FROM `{GCP_PROJECT_ID}.{DATASET_NAME}."
f"{safe_name(SOURCE_CUSTOMER_TABLE)}`",
"useLegacySql": False,
}
},
)
# [END howto_operator_read_data_from_gcs_many_chunks]
# [START howto_operator_trino_to_gcs_csv]
trino_to_gcs_csv = TrinoToGCSOperator(
task_id="trino_to_gcs_csv",
sql=f"select * from {SOURCE_SCHEMA_COLUMNS}",
bucket=GCS_BUCKET,
filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.{{}}.csv",
schema_filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}-schema.json",
export_format="csv",
)
# [END howto_operator_trino_to_gcs_csv]
(
# TEST SETUP
[create_dataset, create_bucket]
# TEST BODY
>> trino_to_gcs_basic
>> trino_to_gcs_multiple_types
>> trino_to_gcs_many_chunks
>> trino_to_gcs_csv
>> create_external_table_multiple_types
>> create_external_table_many_chunks
>> read_data_from_gcs_multiple_types
>> read_data_from_gcs_many_chunks
# TEST TEARDOWN
>> [delete_dataset, delete_bucket]
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)