Source code for tests.system.google.cloud.automl.example_automl_video_tracking

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""

from __future__ import annotations

import os
from datetime import datetime

from google.cloud.aiplatform import schema
from google.protobuf.struct_pb2 import Value

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.gcs import (
    GCSCreateBucketOperator,
    GCSDeleteBucketOperator,
    GCSSynchronizeBucketsOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.auto_ml import (
    CreateAutoMLVideoTrainingJobOperator,
    DeleteAutoMLTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
    CreateDatasetOperator,
    DeleteDatasetOperator,
    ImportDataOperator,
)
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]DAG_ID = "automl_video_track"
[docs]REGION = "us-central1"
[docs]VIDEO_DISPLAY_NAME = f"auto-ml-video-tracking-{ENV_ID}"
[docs]MODEL_DISPLAY_NAME = f"auto-ml-video-tracking-model-{ENV_ID}"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]VIDEO_GCS_BUCKET_NAME = f"bucket_video_tracking_{ENV_ID}".replace("_", "-")
[docs]VIDEO_DATASET = { "display_name": f"video-dataset-{ENV_ID}", "metadata_schema_uri": schema.dataset.metadata.video, "metadata": Value(string_value="video-dataset"), }
[docs]VIDEO_DATA_CONFIG = [ { "import_schema_uri": schema.dataset.ioformat.video.object_tracking, "gcs_source": {"uris": [f"gs://{VIDEO_GCS_BUCKET_NAME}/automl/tracking.csv"]}, }, ]
# Example DAG for AutoML Video Intelligence Object Tracking with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "auto_ml", "video", "tracking"], ) as dag:
[docs] create_bucket = GCSCreateBucketOperator( task_id="create_bucket", bucket_name=VIDEO_GCS_BUCKET_NAME, storage_class="REGIONAL", location=REGION, )
move_dataset_file = GCSSynchronizeBucketsOperator( task_id="move_dataset_to_bucket", source_bucket=RESOURCE_DATA_BUCKET, source_object="automl/datasets/video", destination_bucket=VIDEO_GCS_BUCKET_NAME, destination_object="automl", recursive=True, ) create_video_dataset = CreateDatasetOperator( task_id="video_dataset", dataset=VIDEO_DATASET, region=REGION, project_id=PROJECT_ID, ) video_dataset_id = create_video_dataset.output["dataset_id"] import_video_dataset = ImportDataOperator( task_id="import_video_data", dataset_id=video_dataset_id, region=REGION, project_id=PROJECT_ID, import_configs=VIDEO_DATA_CONFIG, ) # [START howto_cloud_create_video_tracking_training_job_operator] create_auto_ml_video_training_job = CreateAutoMLVideoTrainingJobOperator( task_id="auto_ml_video_task", display_name=VIDEO_DISPLAY_NAME, prediction_type="object_tracking", model_type="CLOUD", dataset_id=video_dataset_id, model_display_name=MODEL_DISPLAY_NAME, region=REGION, project_id=PROJECT_ID, ) # [END howto_cloud_create_video_tracking_training_job_operator] delete_auto_ml_video_training_job = DeleteAutoMLTrainingJobOperator( task_id="delete_auto_ml_video_training_job", training_pipeline_id="{{ task_instance.xcom_pull(task_ids='auto_ml_video_task', " "key='training_id') }}", region=REGION, project_id=PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) delete_video_dataset = DeleteDatasetOperator( task_id="delete_video_dataset", dataset_id=video_dataset_id, region=REGION, project_id=PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) delete_bucket = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=VIDEO_GCS_BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP [ create_bucket >> move_dataset_file, create_video_dataset, ] >> import_video_dataset # TEST BODY >> create_auto_ml_video_training_job # TEST TEARDOWN >> delete_auto_ml_video_training_job >> delete_video_dataset >> delete_bucket ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?