Source code for tests.system.google.cloud.tasks.example_queue

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that creates, gets, lists, updates, purges, pauses, resumes
and deletes Queues in the Google Cloud Tasks service in the Google Cloud.

Required setup:
- GCP_APP_ENGINE_LOCATION: GCP Project's App Engine location `gcloud app describe | grep locationId`.
"""

from __future__ import annotations

import os
from datetime import datetime

from google.api_core.retry import Retry
from google.cloud.tasks_v2.types import Queue
from google.protobuf.field_mask_pb2 import FieldMask

from airflow.decorators import task
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.tasks import (
    CloudTasksQueueCreateOperator,
    CloudTasksQueueDeleteOperator,
    CloudTasksQueueGetOperator,
    CloudTasksQueuePauseOperator,
    CloudTasksQueuePurgeOperator,
    CloudTasksQueueResumeOperator,
    CloudTasksQueuesListOperator,
    CloudTasksQueueUpdateOperator,
)
from airflow.providers.standard.operators.bash import BashOperator
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "cloud_tasks_queue"
[docs]LOCATION = os.environ.get("GCP_APP_ENGINE_LOCATION", "europe-west2")
[docs]QUEUE_ID = f"queue-{ENV_ID}-{DAG_ID.replace('_', '-')}"
with DAG( dag_id=DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "tasks"], ) as dag: @task(task_id="random_string")
[docs] def generate_random_string(): """ Generate random string for queue and task names. Queue name cannot be repeated in preceding 7 days and task name in the last 1 hour. """ import random import string return "".join(random.choices(string.ascii_uppercase + string.digits, k=8))
random_string = generate_random_string() # [START create_queue] create_queue = CloudTasksQueueCreateOperator( location=LOCATION, task_queue=Queue(stackdriver_logging_config=dict(sampling_ratio=0.5)), queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", retry=Retry(maximum=10.0), timeout=5, task_id="create_queue", ) # [END create_queue] # [START delete_queue] delete_queue = CloudTasksQueueDeleteOperator( location=LOCATION, queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", task_id="delete_queue", ) # [END delete_queue] delete_queue.trigger_rule = TriggerRule.ALL_DONE # [START resume_queue] resume_queue = CloudTasksQueueResumeOperator( location=LOCATION, queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", task_id="resume_queue", ) # [END resume_queue] # [START pause_queue] pause_queue = CloudTasksQueuePauseOperator( location=LOCATION, queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", task_id="pause_queue", ) # [END pause_queue] # [START purge_queue] purge_queue = CloudTasksQueuePurgeOperator( location=LOCATION, queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", task_id="purge_queue", ) # [END purge_queue] # [START get_queue] get_queue = CloudTasksQueueGetOperator( location=LOCATION, queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", task_id="get_queue", ) get_queue_result = BashOperator( task_id="get_queue_result", bash_command=f"echo {get_queue.output}", ) # [END get_queue] # [START update_queue] update_queue = CloudTasksQueueUpdateOperator( task_queue=Queue(stackdriver_logging_config=dict(sampling_ratio=1)), location=LOCATION, queue_name=QUEUE_ID + "{{ task_instance.xcom_pull(task_ids='random_string') }}", update_mask=FieldMask(paths=["stackdriver_logging_config.sampling_ratio"]), task_id="update_queue", ) # [END update_queue] # [START list_queue] list_queue = CloudTasksQueuesListOperator(location=LOCATION, task_id="list_queue") # [END list_queue] chain( random_string, create_queue, update_queue, pause_queue, resume_queue, purge_queue, get_queue, get_queue_result, list_queue, delete_queue, ) from dev.tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from dev.tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?