Source code for tests.system.google.cloud.gcs.example_trino_to_gcs

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example DAG using TrinoToGCSOperator.
"""

from __future__ import annotations

import os
import re
from datetime import datetime

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.bigquery import (
    BigQueryCreateEmptyDatasetOperator,
    BigQueryCreateExternalTableOperator,
    BigQueryDeleteDatasetOperator,
    BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.transfers.trino_to_gcs import TrinoToGCSOperator
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "example_trino_to_gcs"
[docs]GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project")
[docs]GCS_BUCKET = f"bucket_{DAG_ID}_{ENV_ID}"
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
[docs]SOURCE_SCHEMA_COLUMNS = "memory.information_schema.columns"
[docs]SOURCE_CUSTOMER_TABLE = "tpch.sf1.customer"
[docs]def safe_name(s: str) -> str: """ Remove invalid characters for filename """ return re.sub("[^0-9a-zA-Z_]+", "_", s)
with DAG( dag_id=DAG_ID, schedule="@once", # Override to match your needs start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "gcs"], ) as dag:
[docs] create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create-dataset", dataset_id=DATASET_NAME)
delete_dataset = BigQueryDeleteDatasetOperator( task_id="delete_dataset", dataset_id=DATASET_NAME, delete_contents=True, trigger_rule=TriggerRule.ALL_DONE, ) create_bucket = GCSCreateBucketOperator(task_id="create_bucket", bucket_name=GCS_BUCKET) delete_bucket = GCSDeleteBucketOperator(task_id="delete_bucket", bucket_name=GCS_BUCKET) # [START howto_operator_trino_to_gcs_basic] trino_to_gcs_basic = TrinoToGCSOperator( task_id="trino_to_gcs_basic", sql=f"select * from {SOURCE_SCHEMA_COLUMNS}", bucket=GCS_BUCKET, filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.{{}}.json", ) # [END howto_operator_trino_to_gcs_basic] # [START howto_operator_trino_to_gcs_multiple_types] trino_to_gcs_multiple_types = TrinoToGCSOperator( task_id="trino_to_gcs_multiple_types", sql=f"select * from {SOURCE_SCHEMA_COLUMNS}", bucket=GCS_BUCKET, filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.{{}}.json", schema_filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}-schema.json", gzip=False, ) # [END howto_operator_trino_to_gcs_multiple_types] # [START howto_operator_create_external_table_multiple_types] create_external_table_multiple_types = BigQueryCreateExternalTableOperator( task_id="create_external_table_multiple_types", bucket=GCS_BUCKET, table_resource={ "tableReference": { "projectId": GCP_PROJECT_ID, "datasetId": DATASET_NAME, "tableId": f"{safe_name(SOURCE_SCHEMA_COLUMNS)}", }, "schema": { "fields": [ {"name": "table_catalog", "type": "STRING"}, {"name": "table_schema", "type": "STRING"}, {"name": "table_name", "type": "STRING"}, {"name": "column_name", "type": "STRING"}, {"name": "ordinal_position", "type": "INT64"}, {"name": "column_default", "type": "STRING"}, {"name": "is_nullable", "type": "STRING"}, {"name": "data_type", "type": "STRING"}, ], }, "externalDataConfiguration": { "sourceFormat": "NEWLINE_DELIMITED_JSON", "compression": "NONE", "sourceUris": [f"gs://{GCS_BUCKET}/{safe_name(SOURCE_SCHEMA_COLUMNS)}.*.json"], }, }, source_objects=[f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.*.json"], schema_object=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}-schema.json", ) # [END howto_operator_create_external_table_multiple_types] read_data_from_gcs_multiple_types = BigQueryInsertJobOperator( task_id="read_data_from_gcs_multiple_types", configuration={ "query": { "query": f"SELECT COUNT(*) FROM `{GCP_PROJECT_ID}.{DATASET_NAME}." f"{safe_name(SOURCE_SCHEMA_COLUMNS)}`", "useLegacySql": False, } }, ) # [START howto_operator_trino_to_gcs_many_chunks] trino_to_gcs_many_chunks = TrinoToGCSOperator( task_id="trino_to_gcs_many_chunks", sql=f"select * from {SOURCE_CUSTOMER_TABLE}", bucket=GCS_BUCKET, filename=f"{safe_name(SOURCE_CUSTOMER_TABLE)}.{{}}.json", schema_filename=f"{safe_name(SOURCE_CUSTOMER_TABLE)}-schema.json", approx_max_file_size_bytes=10_000_000, gzip=False, ) # [END howto_operator_trino_to_gcs_many_chunks] create_external_table_many_chunks = BigQueryCreateExternalTableOperator( task_id="create_external_table_many_chunks", bucket=GCS_BUCKET, table_resource={ "tableReference": { "projectId": GCP_PROJECT_ID, "datasetId": DATASET_NAME, "tableId": f"{safe_name(SOURCE_CUSTOMER_TABLE)}", }, "schema": { "fields": [ {"name": "custkey", "type": "INT64"}, {"name": "name", "type": "STRING"}, {"name": "address", "type": "STRING"}, {"name": "nationkey", "type": "INT64"}, {"name": "phone", "type": "STRING"}, {"name": "acctbal", "type": "FLOAT64"}, {"name": "mktsegment", "type": "STRING"}, {"name": "comment", "type": "STRING"}, ] }, "externalDataConfiguration": { "sourceFormat": "NEWLINE_DELIMITED_JSON", "compression": "NONE", "sourceUris": [f"gs://{GCS_BUCKET}/{safe_name(SOURCE_CUSTOMER_TABLE)}.*.json"], }, }, source_objects=[f"{safe_name(SOURCE_CUSTOMER_TABLE)}.*.json"], schema_object=f"{safe_name(SOURCE_CUSTOMER_TABLE)}-schema.json", ) # [START howto_operator_read_data_from_gcs_many_chunks] read_data_from_gcs_many_chunks = BigQueryInsertJobOperator( task_id="read_data_from_gcs_many_chunks", configuration={ "query": { "query": f"SELECT COUNT(*) FROM `{GCP_PROJECT_ID}.{DATASET_NAME}." f"{safe_name(SOURCE_CUSTOMER_TABLE)}`", "useLegacySql": False, } }, ) # [END howto_operator_read_data_from_gcs_many_chunks] # [START howto_operator_trino_to_gcs_csv] trino_to_gcs_csv = TrinoToGCSOperator( task_id="trino_to_gcs_csv", sql=f"select * from {SOURCE_SCHEMA_COLUMNS}", bucket=GCS_BUCKET, filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}.{{}}.csv", schema_filename=f"{safe_name(SOURCE_SCHEMA_COLUMNS)}-schema.json", export_format="csv", ) # [END howto_operator_trino_to_gcs_csv] ( # TEST SETUP [create_dataset, create_bucket] # TEST BODY >> trino_to_gcs_basic >> trino_to_gcs_multiple_types >> trino_to_gcs_many_chunks >> trino_to_gcs_csv >> create_external_table_multiple_types >> create_external_table_many_chunks >> read_data_from_gcs_multiple_types >> read_data_from_gcs_many_chunks # TEST TEARDOWN >> [delete_dataset, delete_bucket] ) from dev.tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from dev.tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?