Source code for tests.system.google.cloud.dataproc.example_dataproc_gke

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that show how to create a Dataproc cluster in Google Kubernetes Engine.

Required environment variables:
GKE_NAMESPACE = os.environ.get("GKE_NAMESPACE", f"{CLUSTER_NAME}")
A GKE cluster can support multiple DP clusters running in different namespaces.
Define a namespace or assign a default one.
Notice: optional kubernetes_namespace parameter in VIRTUAL_CLUSTER_CONFIG should be the same as GKE_NAMESPACE

"""

from __future__ import annotations

import os
from datetime import datetime

from google.api_core.retry import Retry

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataproc import (
    DataprocCreateClusterOperator,
    DataprocDeleteClusterOperator,
)
from airflow.providers.google.cloud.operators.kubernetes_engine import (
    GKECreateClusterOperator,
    GKEDeleteClusterOperator,
)
from airflow.utils.trigger_rule import TriggerRule

from providers.tests.system.google import DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "dataproc_gke"
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT") or DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]REGION = "us-central1"
[docs]CLUSTER_NAME_BASE = f"cluster-{DAG_ID}".replace("_", "-")
[docs]CLUSTER_NAME_FULL = CLUSTER_NAME_BASE + f"-{ENV_ID}".replace("_", "-")
[docs]CLUSTER_NAME = CLUSTER_NAME_BASE if len(CLUSTER_NAME_FULL) >= 33 else CLUSTER_NAME_FULL
[docs]GKE_CLUSTER_NAME = f"cluster-{ENV_ID}-{DAG_ID}-gke".replace("_", "-")
[docs]WORKLOAD_POOL = f"{PROJECT_ID}.svc.id.goog"
[docs]GKE_CLUSTER_CONFIG = { "name": GKE_CLUSTER_NAME, "workload_identity_config": { "workload_pool": WORKLOAD_POOL, }, "initial_node_count": 1, }
[docs]GKE_NAMESPACE = os.environ.get("GKE_NAMESPACE", f"{CLUSTER_NAME}")
# [START how_to_cloud_dataproc_create_cluster_in_gke_config]
[docs]VIRTUAL_CLUSTER_CONFIG = { "kubernetes_cluster_config": { "gke_cluster_config": { "gke_cluster_target": f"projects/{PROJECT_ID}/locations/{REGION}/clusters/{GKE_CLUSTER_NAME}", "node_pool_target": [ { "node_pool": f"projects/{PROJECT_ID}/locations/{REGION}/clusters/{GKE_CLUSTER_NAME}/nodePools/dp", "roles": ["DEFAULT"], "node_pool_config": { "config": { "preemptible": False, "machine_type": "e2-standard-4", } }, } ], }, "kubernetes_software_config": {"component_version": {"SPARK": b"3"}}, }, "staging_bucket": "test-staging-bucket", }
# [END how_to_cloud_dataproc_create_cluster_in_gke_config] with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "dataproc", "gke"], ) as dag:
[docs] create_gke_cluster = GKECreateClusterOperator( task_id="create_gke_cluster", project_id=PROJECT_ID, location=REGION, body=GKE_CLUSTER_CONFIG, )
# [START how_to_cloud_dataproc_create_cluster_operator_in_gke] create_cluster_in_gke = DataprocCreateClusterOperator( task_id="create_cluster_in_gke", project_id=PROJECT_ID, region=REGION, cluster_name=CLUSTER_NAME, virtual_cluster_config=VIRTUAL_CLUSTER_CONFIG, retry=Retry(maximum=100.0, initial=10.0, multiplier=1.0), num_retries_if_resource_is_not_ready=3, ) # [END how_to_cloud_dataproc_create_cluster_operator_in_gke] delete_dataproc_cluster = DataprocDeleteClusterOperator( task_id="delete_dataproc_cluster", project_id=PROJECT_ID, cluster_name=CLUSTER_NAME, region=REGION, trigger_rule=TriggerRule.ALL_DONE, ) delete_gke_cluster = GKEDeleteClusterOperator( task_id="delete_gke_cluster", name=GKE_CLUSTER_NAME, project_id=PROJECT_ID, location=REGION, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP create_gke_cluster # TEST BODY >> create_cluster_in_gke # TEST TEARDOWN >> delete_dataproc_cluster >> delete_gke_cluster ) from dev.tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from dev.tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?