#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for testing Google DataPipelines Create Data Pipeline Operator.
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataflow import DataflowDeletePipelineOperator
from airflow.providers.google.cloud.operators.datapipeline import (
CreateDataPipelineOperator,
RunDataPipelineOperator,
)
from airflow.providers.google.cloud.operators.gcs import (
GCSCreateBucketOperator,
GCSDeleteBucketOperator,
GCSSynchronizeBucketsOperator,
)
from airflow.utils.trigger_rule import TriggerRule
from providers.tests.system.google import DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default") or DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]GCP_LOCATION = "us-central1"
[docs]PIPELINE_NAME = f"{DAG_ID}-{ENV_ID}".replace("_", "-")
[docs]PIPELINE_JOB_NAME = f"{DAG_ID}-{ENV_ID}-job".replace("_", "-")
[docs]PIPELINE_TYPE = "PIPELINE_TYPE_BATCH"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}".replace("-", "_")
[docs]FILE_NAME = "kinglear.txt"
[docs]TEMPLATE_FILE = "word-count.json"
[docs]TEMP_LOCATION = f"gs://{BUCKET_NAME}/temp"
[docs]GCS_PATH = f"gs://{BUCKET_NAME}/dataflow/{TEMPLATE_FILE}"
[docs]OUTPUT = f"gs://{BUCKET_NAME}/results/hello"
with DAG(
DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "datapipeline"],
) as dag:
[docs] create_bucket = GCSCreateBucketOperator(task_id="create_bucket", bucket_name=BUCKET_NAME)
move_files_to_bucket = GCSSynchronizeBucketsOperator(
task_id="move_files_to_bucket",
source_bucket=RESOURCE_DATA_BUCKET,
source_object="dataflow/pipelines",
destination_bucket=BUCKET_NAME,
destination_object="dataflow",
recursive=True,
)
# [START howto_operator_create_data_pipeline]
create_data_pipeline = CreateDataPipelineOperator(
task_id="create_data_pipeline",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
body={
"name": f"projects/{GCP_PROJECT_ID}/locations/{GCP_LOCATION}/pipelines/{PIPELINE_NAME}",
"type": PIPELINE_TYPE,
"workload": {
"dataflowFlexTemplateRequest": {
"launchParameter": {
"containerSpecGcsPath": GCS_PATH,
"jobName": PIPELINE_JOB_NAME,
"environment": {"tempLocation": TEMP_LOCATION},
"parameters": {
"inputFile": INPUT_FILE,
"output": OUTPUT,
},
},
"projectId": GCP_PROJECT_ID,
"location": GCP_LOCATION,
}
},
},
)
# [END howto_operator_create_data_pipeline]
# [START howto_operator_run_data_pipeline]
run_data_pipeline = RunDataPipelineOperator(
task_id="run_data_pipeline",
data_pipeline_name=PIPELINE_NAME,
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_run_data_pipeline]
# [START howto_operator_delete_dataflow_pipeline]
delete_pipeline = DataflowDeletePipelineOperator(
task_id="delete_data_pipeline",
pipeline_name=PIPELINE_NAME,
project_id=GCP_PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
# [END howto_operator_delete_dataflow_pipeline]
delete_bucket = GCSDeleteBucketOperator(
task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE
)
(
# TEST SETUP
create_bucket
>> move_files_to_bucket
# TEST BODY
>> create_data_pipeline
>> run_data_pipeline
# TEST TEARDOWN
>> delete_pipeline
>> delete_bucket
)
from dev.tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from dev.tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)