#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Example Airflow DAG that uses Google Cloud Run Operators."""
from __future__ import annotations
import os
from datetime import datetime
from google.cloud.run_v2 import Job
from google.cloud.run_v2.types import k8s_min
from airflow.models.dag import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.google.cloud.operators.cloud_run import (
CloudRunCreateJobOperator,
CloudRunDeleteJobOperator,
CloudRunExecuteJobOperator,
CloudRunListJobsOperator,
CloudRunUpdateJobOperator,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]job_name_prefix = "cloudrun-system-test-job"
[docs]job1_name = f"{job_name_prefix}1-{ENV_ID}"
[docs]job2_name = f"{job_name_prefix}2-{ENV_ID}"
[docs]job3_name = f"{job_name_prefix}3-{ENV_ID}"
[docs]create1_task_name = "create-job1"
[docs]create2_task_name = "create-job2"
[docs]create3_task_name = "create-job3"
[docs]execute1_task_name = "execute-job1"
[docs]execute2_task_name = "execute-job2"
[docs]execute3_task_name = "execute-job3"
[docs]update_job1_task_name = "update-job1"
[docs]delete1_task_name = "delete-job1"
[docs]delete2_task_name = "delete-job2"
[docs]list_jobs_limit_task_name = "list-jobs-limit"
[docs]list_jobs_task_name = "list-jobs"
[docs]clean1_task_name = "clean-job1"
[docs]clean2_task_name = "clean-job2"
def _assert_executed_jobs_xcom(ti):
job1_dicts = ti.xcom_pull(task_ids=[execute1_task_name], key="return_value")
assert job1_name in job1_dicts[0]["name"]
job2_dicts = ti.xcom_pull(task_ids=[execute2_task_name], key="return_value")
assert job2_name in job2_dicts[0]["name"]
job3_dicts = ti.xcom_pull(task_ids=[execute3_task_name], key="return_value")
assert job3_name in job3_dicts[0]["name"]
def _assert_created_jobs_xcom(ti):
job1_dicts = ti.xcom_pull(task_ids=[create1_task_name], key="return_value")
assert job1_name in job1_dicts[0]["name"]
job2_dicts = ti.xcom_pull(task_ids=[create2_task_name], key="return_value")
assert job2_name in job2_dicts[0]["name"]
job3_dicts = ti.xcom_pull(task_ids=[create3_task_name], key="return_value")
assert job3_name in job3_dicts[0]["name"]
def _assert_updated_job(ti):
job_dicts = ti.xcom_pull(task_ids=[update_job1_task_name], key="return_value")
job_dict = job_dicts[0]
assert job_dict["labels"]["somelabel"] == "label1"
def _assert_jobs(ti):
job_dicts = ti.xcom_pull(task_ids=[list_jobs_task_name], key="return_value")
job1_exists = False
job2_exists = False
for job_dict in job_dicts[0]:
if job1_exists and job2_exists:
break
if job1_name in job_dict["name"]:
job1_exists = True
if job2_name in job_dict["name"]:
job2_exists = True
assert job1_exists
assert job2_exists
def _assert_one_job(ti):
job_dicts = ti.xcom_pull(task_ids=[list_jobs_limit_task_name], key="return_value")
assert len(job_dicts[0]) == 1
# [START howto_cloud_run_job_instance_creation]
def _create_job_instance() -> Job:
"""
Create a Cloud Run job configuration with google.cloud.run_v2.Job object.
As a minimum the configuration must contain a container image name in its template.
The rest of the configuration parameters are optional and will be populated with default values if not set.
"""
job = Job()
container = k8s_min.Container()
container.image = "us-docker.pkg.dev/cloudrun/container/job:latest"
container.resources.limits = {"cpu": "2", "memory": "1Gi"}
job.template.template.containers.append(container)
return job
# [END howto_cloud_run_job_instance_creation]
# [START howto_cloud_run_job_dict_creation]
def _create_job_dict() -> dict:
"""
Create a Cloud Run job configuration with a Python dict.
As a minimum the configuration must contain a container image name in its template.
"""
return {
"template": {
"template": {
"containers": [
{
"image": "us-docker.pkg.dev/cloudrun/container/job:latest",
"resources": {
"limits": {"cpu": "1", "memory": "512Mi"},
"cpu_idle": False,
"startup_cpu_boost": False,
},
"name": "",
"command": [],
"args": [],
"env": [],
"ports": [],
"volume_mounts": [],
"working_dir": "",
"depends_on": [],
}
],
"volumes": [],
"execution_environment": 0,
"encryption_key": "",
},
"labels": {},
"annotations": {},
"parallelism": 0,
"task_count": 0,
},
"name": "",
"uid": "",
"generation": "0",
"labels": {},
"annotations": {},
"creator": "",
"last_modifier": "",
"client": "",
"client_version": "",
"launch_stage": 0,
"observed_generation": "0",
"conditions": [],
"execution_count": 0,
"reconciling": False,
"satisfies_pzs": False,
"etag": "",
}
# [END howto_cloud_run_job_dict_creation]
def _create_job_instance_with_label():
job = _create_job_instance()
job.labels = {"somelabel": "label1"}
return job
with DAG(
DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "cloud", "run"],
) as dag:
# [START howto_operator_cloud_run_create_job]
[docs] create1 = CloudRunCreateJobOperator(
task_id=create1_task_name,
project_id=PROJECT_ID,
region=region,
job_name=job1_name,
job=_create_job_instance(),
dag=dag,
)
# [END howto_operator_cloud_run_create_job]
create2 = CloudRunCreateJobOperator(
task_id=create2_task_name,
project_id=PROJECT_ID,
region=region,
job_name=job2_name,
job=_create_job_dict(),
dag=dag,
)
create3 = CloudRunCreateJobOperator(
task_id=create3_task_name,
project_id=PROJECT_ID,
region=region,
job_name=job3_name,
job=Job.to_dict(_create_job_instance()),
dag=dag,
)
assert_created_jobs = PythonOperator(
task_id="assert-created-jobs", python_callable=_assert_created_jobs_xcom, dag=dag
)
# [START howto_operator_cloud_run_execute_job]
execute1 = CloudRunExecuteJobOperator(
task_id=execute1_task_name,
project_id=PROJECT_ID,
region=region,
job_name=job1_name,
dag=dag,
deferrable=False,
)
# [END howto_operator_cloud_run_execute_job]
# [START howto_operator_cloud_run_execute_job_deferrable_mode]
execute2 = CloudRunExecuteJobOperator(
task_id=execute2_task_name,
project_id=PROJECT_ID,
region=region,
job_name=job2_name,
dag=dag,
deferrable=True,
)
# [END howto_operator_cloud_run_execute_job_deferrable_mode]
# [START howto_operator_cloud_run_execute_job_with_overrides]
overrides = {
"container_overrides": [
{
"name": "job",
"args": ["python", "main.py"],
"env": [{"name": "ENV_VAR", "value": "value"}],
"clear_args": False,
}
],
"task_count": 1,
"timeout": "60s",
}
execute3 = CloudRunExecuteJobOperator(
task_id=execute3_task_name,
project_id=PROJECT_ID,
region=region,
overrides=overrides,
job_name=job3_name,
dag=dag,
deferrable=False,
)
# [END howto_operator_cloud_run_execute_job_with_overrides]
assert_executed_jobs = PythonOperator(
task_id="assert-executed-jobs", python_callable=_assert_executed_jobs_xcom, dag=dag
)
list_jobs_limit = CloudRunListJobsOperator(
task_id=list_jobs_limit_task_name, project_id=PROJECT_ID, region=region, dag=dag, limit=1
)
assert_jobs_limit = PythonOperator(task_id="assert-jobs-limit", python_callable=_assert_one_job, dag=dag)
# [START howto_operator_cloud_run_list_jobs]
list_jobs = CloudRunListJobsOperator(
task_id=list_jobs_task_name, project_id=PROJECT_ID, region=region, dag=dag
)
# [END howto_operator_cloud_run_list_jobs]
assert_jobs = PythonOperator(task_id="assert-jobs", python_callable=_assert_jobs, dag=dag)
# [START howto_operator_cloud_update_job]
update_job1 = CloudRunUpdateJobOperator(
task_id=update_job1_task_name,
project_id=PROJECT_ID,
region=region,
job_name=job1_name,
job=_create_job_instance_with_label(),
dag=dag,
)
# [END howto_operator_cloud_update_job]
assert_job_updated = PythonOperator(
task_id="assert-job-updated", python_callable=_assert_updated_job, dag=dag
)
# [START howto_operator_cloud_delete_job]
delete_job1 = CloudRunDeleteJobOperator(
task_id="delete-job1",
project_id=PROJECT_ID,
region=region,
job_name=job1_name,
dag=dag,
trigger_rule=TriggerRule.ALL_DONE,
)
# [END howto_operator_cloud_delete_job]
delete_job2 = CloudRunDeleteJobOperator(
task_id="delete-job2",
project_id=PROJECT_ID,
region=region,
job_name=job2_name,
dag=dag,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_job3 = CloudRunDeleteJobOperator(
task_id="delete-job3",
project_id=PROJECT_ID,
region=region,
job_name=job3_name,
dag=dag,
trigger_rule=TriggerRule.ALL_DONE,
)
(
(create1, create2, create3)
>> assert_created_jobs
>> (execute1, execute2, execute3)
>> assert_executed_jobs
>> list_jobs_limit
>> assert_jobs_limit
>> list_jobs
>> assert_jobs
>> update_job1
>> assert_job_updated
>> (delete_job1, delete_job2, delete_job3)
)
from dev.tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from dev.tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)