#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google BigQuery Sensors.
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.bigquery import (
    BigQueryCreateEmptyDatasetOperator,
    BigQueryCreateEmptyTableOperator,
    BigQueryDeleteDatasetOperator,
    BigQueryInsertJobOperator,
)
from airflow.providers.google.cloud.sensors.bigquery import (
    BigQueryTableExistenceSensor,
    BigQueryTablePartitionExistenceSensor,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default") 
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default") 
[docs]DAG_ID = "bigquery_sensors" 
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}".replace("-", "_") 
[docs]TABLE_NAME = f"partitioned_table_{DAG_ID}_{ENV_ID}".replace("-", "_") 
[docs]INSERT_DATE = datetime.now().strftime("%Y-%m-%d") 
[docs]PARTITION_NAME = "{{ ds_nodash }}" 
[docs]INSERT_ROWS_QUERY = f"INSERT {DATASET_NAME}.{TABLE_NAME} VALUES (42, '{{{{ ds }}}}')" 
[docs]SCHEMA = [
    {"name": "value", "type": "INTEGER", "mode": "REQUIRED"},
    {"name": "ds", "type": "DATE", "mode": "NULLABLE"},
] 
with DAG(
    DAG_ID,
    schedule="@once",
    start_date=datetime(2021, 1, 1),
    catchup=False,
    tags=["example", "bigquery", "sensors"],
    user_defined_macros={"DATASET": DATASET_NAME, "TABLE": TABLE_NAME},
    default_args={"project_id": PROJECT_ID},
) as dag:
[docs]    create_dataset = BigQueryCreateEmptyDatasetOperator(
        task_id="create_dataset", dataset_id=DATASET_NAME, project_id=PROJECT_ID
    ) 
    create_table = BigQueryCreateEmptyTableOperator(
        task_id="create_table",
        dataset_id=DATASET_NAME,
        table_id=TABLE_NAME,
        schema_fields=SCHEMA,
        time_partitioning={
            "type": "DAY",
            "field": "ds",
        },
    )
    # [START howto_sensor_bigquery_table]
    check_table_exists = BigQueryTableExistenceSensor(
        task_id="check_table_exists", project_id=PROJECT_ID, dataset_id=DATASET_NAME, table_id=TABLE_NAME
    )
    # [END howto_sensor_bigquery_table]
    # [START howto_sensor_bigquery_table_defered]
    check_table_exists_def = BigQueryTableExistenceSensor(
        task_id="check_table_exists_def",
        project_id=PROJECT_ID,
        dataset_id=DATASET_NAME,
        table_id=TABLE_NAME,
        deferrable=True,
    )
    # [END howto_sensor_bigquery_table_defered]
    # [START howto_sensor_async_bigquery_table]
    check_table_exists_async = BigQueryTableExistenceSensor(
        task_id="check_table_exists_async",
        project_id=PROJECT_ID,
        dataset_id=DATASET_NAME,
        table_id=TABLE_NAME,
    )
    # [END howto_sensor_async_bigquery_table]
    execute_insert_query = BigQueryInsertJobOperator(
        task_id="execute_insert_query",
        configuration={
            "query": {
                "query": INSERT_ROWS_QUERY,
                "useLegacySql": False,
            }
        },
    )
    # [START howto_sensor_bigquery_table_partition]
    check_table_partition_exists = BigQueryTablePartitionExistenceSensor(
        task_id="check_table_partition_exists",
        project_id=PROJECT_ID,
        dataset_id=DATASET_NAME,
        table_id=TABLE_NAME,
        partition_id=PARTITION_NAME,
    )
    # [END howto_sensor_bigquery_table_partition]
    # [START howto_sensor_bigquery_table_partition_defered]
    check_table_partition_exists_def = BigQueryTablePartitionExistenceSensor(
        task_id="check_table_partition_exists_def",
        project_id=PROJECT_ID,
        dataset_id=DATASET_NAME,
        table_id=TABLE_NAME,
        partition_id=PARTITION_NAME,
        deferrable=True,
    )
    # [END howto_sensor_bigquery_table_partition_defered]
    # [START howto_sensor_bigquery_table_partition_async]
    check_table_partition_exists_async = BigQueryTablePartitionExistenceSensor(
        task_id="check_table_partition_exists_async",
        partition_id=PARTITION_NAME,
        project_id=PROJECT_ID,
        dataset_id=DATASET_NAME,
        table_id=TABLE_NAME,
    )
    # [END howto_sensor_bigquery_table_partition_async]
    delete_dataset = BigQueryDeleteDatasetOperator(
        task_id="delete_dataset",
        dataset_id=DATASET_NAME,
        delete_contents=True,
        trigger_rule=TriggerRule.ALL_DONE,
    )
    (
        create_dataset
        >> create_table
        >> [check_table_exists, check_table_exists_async, check_table_exists_def]
        >> execute_insert_query
        >> [
            check_table_partition_exists,
            check_table_partition_exists_async,
            check_table_partition_exists_def,
        ]
        >> delete_dataset
    )
    from dev.tests_common.test_utils.watcher import watcher
    # This test needs watcher in order to properly mark success/failure
    # when "tearDown" task with trigger rule is part of the DAG
    list(dag.tasks) >> watcher()
from dev.tests_common.test_utils.system_tests import get_test_run  # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)