Source code for tests.system.providers.google.cloud.automl.example_automl_model
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License."""Example Airflow DAG for Google AutoML service testing model operations."""from__future__importannotationsimportosfromdatetimeimportdatetimefromgoogle.protobuf.struct_pb2importValuefromairflow.models.dagimportDAGfromairflow.providers.google.cloud.operators.automlimport(AutoMLBatchPredictOperator,AutoMLCreateDatasetOperator,AutoMLDeleteDatasetOperator,AutoMLDeleteModelOperator,AutoMLGetModelOperator,AutoMLImportDataOperator,AutoMLPredictOperator,AutoMLTrainModelOperator,)fromairflow.providers.google.cloud.operators.gcsimport(GCSCreateBucketOperator,GCSDeleteBucketOperator,GCSSynchronizeBucketsOperator,)fromairflow.utils.trigger_ruleimportTriggerRule
move_dataset_file=GCSSynchronizeBucketsOperator(task_id="move_data_to_bucket",source_bucket=RESOURCE_DATA_BUCKET,source_object="automl/datasets/model",destination_bucket=DATA_SAMPLE_GCS_BUCKET_NAME,destination_object="automl",recursive=True,)create_dataset=AutoMLCreateDatasetOperator(task_id="create_dataset",dataset=DATASET,location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,)dataset_id=create_dataset.output["dataset_id"]MODEL["dataset_id"]=dataset_idimport_dataset=AutoMLImportDataOperator(task_id="import_dataset",dataset_id=dataset_id,location=GCP_AUTOML_LOCATION,input_config=IMPORT_INPUT_CONFIG,)# [START howto_operator_automl_create_model]create_model=AutoMLTrainModelOperator(task_id="create_model",model=MODEL,location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,)model_id=create_model.output["model_id"]# [END howto_operator_automl_create_model]# [START howto_operator_get_model]get_model=AutoMLGetModelOperator(task_id="get_model",model_id=model_id,location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,)# [END howto_operator_get_model]# [START howto_operator_prediction]predict_task=AutoMLPredictOperator(task_id="predict_task",model_id=model_id,payload={"row":{"values":PREDICT_VALUES,}},location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,)# [END howto_operator_prediction]# [START howto_operator_batch_prediction]batch_predict_task=AutoMLBatchPredictOperator(task_id="batch_predict_task",model_id=model_id,input_config=IMPORT_INPUT_CONFIG,output_config=IMPORT_OUTPUT_CONFIG,location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,)# [END howto_operator_batch_prediction]# [START howto_operator_automl_delete_model]delete_model=AutoMLDeleteModelOperator(task_id="delete_model",model_id=model_id,location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,)# [END howto_operator_automl_delete_model]delete_dataset=AutoMLDeleteDatasetOperator(task_id="delete_dataset",dataset_id=dataset_id,location=GCP_AUTOML_LOCATION,project_id=GCP_PROJECT_ID,trigger_rule=TriggerRule.ALL_DONE,)delete_bucket=GCSDeleteBucketOperator(task_id="delete_bucket",bucket_name=DATA_SAMPLE_GCS_BUCKET_NAME,trigger_rule=TriggerRule.ALL_DONE,)(# TEST SETUP[create_bucket>>move_dataset_file,create_dataset]>>import_dataset# TEST BODY>>create_model>>get_model>>predict_task>>batch_predict_task# TEST TEARDOWN>>delete_model>>delete_dataset>>delete_bucket)fromtests.system.utils.watcherimportwatcher# This test needs watcher in order to properly mark success/failure# when "tearDown" task with trigger rule is part of the DAGlist(dag.tasks)>>watcher()fromtests.system.utilsimportget_test_run# noqa: E402# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)