Source code for tests.system.providers.google.cloud.cloud_functions.example_functions

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Example Airflow DAG that displays interactions with Google Cloud Functions.
It creates a function and then deletes it.

This DAG relies on the following OS environment variables
https://airflow.apache.org/concepts.html#variables

* PROJECT_ID - Google Cloud Project to use for the Cloud Function.
* LOCATION - Google Cloud Functions region where the function should be
  created.
* ENTRYPOINT - Name of the executable function in the source code.
* and one of the below:

    * SOURCE_ARCHIVE_URL - Path to the zipped source in Google Cloud Storage

    * SOURCE_UPLOAD_URL - Generated upload URL for the zipped source and ZIP_PATH - Local path to
      the zipped source archive

    * SOURCE_REPOSITORY - The URL pointing to the hosted repository where the function
      is defined in a supported Cloud Source Repository URL format
      https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#SourceRepository

"""

from __future__ import annotations

import os
from datetime import datetime
from typing import Any

from airflow import models
from airflow.models.baseoperator import chain
from airflow.providers.google.cloud.operators.functions import (
    CloudFunctionDeleteFunctionOperator,
    CloudFunctionDeployFunctionOperator,
    CloudFunctionInvokeFunctionOperator,
)

[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT")
[docs]DAG_ID = "example_gcp_function"
# make sure there are no dashes in function name (!)
[docs]SHORT_FUNCTION_NAME = "hello"
[docs]LOCATION = "europe-west1"
[docs]FUNCTION_NAME = f"projects/{PROJECT_ID}/locations/{LOCATION}/functions/{SHORT_FUNCTION_NAME}"
[docs]SOURCE_ARCHIVE_URL = ""
[docs]SOURCE_UPLOAD_URL = ""
[docs]repo = "test-repo"
[docs]SOURCE_REPOSITORY = ( f"https://source.developers.google.com/projects/{PROJECT_ID}/repos/{repo}/moveable-aliases/master" )
[docs]ZIP_PATH = ""
[docs]ENTRYPOINT = "helloWorld"
[docs]RUNTIME = "nodejs14"
[docs]VALIDATE_BODY = True
# [START howto_operator_gcf_deploy_body]
[docs]body = {"name": FUNCTION_NAME, "entryPoint": ENTRYPOINT, "runtime": RUNTIME, "httpsTrigger": {}}
# [END howto_operator_gcf_deploy_body] # [START howto_operator_gcf_default_args]
[docs]default_args: dict[str, Any] = {"retries": 3}
# [END howto_operator_gcf_default_args] # [START howto_operator_gcf_deploy_variants] if SOURCE_ARCHIVE_URL: body["sourceArchiveUrl"] = SOURCE_ARCHIVE_URL elif SOURCE_REPOSITORY: body["sourceRepository"] = {"url": SOURCE_REPOSITORY} elif ZIP_PATH: body["sourceUploadUrl"] = "" default_args["zip_path"] = ZIP_PATH elif SOURCE_UPLOAD_URL: body["sourceUploadUrl"] = SOURCE_UPLOAD_URL else: raise Exception("Please provide one of the source_code parameters") # [END howto_operator_gcf_deploy_variants] with models.DAG( DAG_ID, default_args=default_args, start_date=datetime(2021, 1, 1), catchup=False, tags=["example"], ) as dag: # [START howto_operator_gcf_deploy]
[docs] deploy_task = CloudFunctionDeployFunctionOperator( task_id="gcf_deploy_task", project_id=PROJECT_ID, location=LOCATION, body=body, validate_body=VALIDATE_BODY, )
# [END howto_operator_gcf_deploy] # [START howto_operator_gcf_deploy_no_project_id] deploy2_task = CloudFunctionDeployFunctionOperator( task_id="gcf_deploy2_task", location=LOCATION, body=body, validate_body=VALIDATE_BODY ) # [END howto_operator_gcf_deploy_no_project_id] # [START howto_operator_gcf_invoke_function] invoke_task = CloudFunctionInvokeFunctionOperator( task_id="invoke_task", project_id=PROJECT_ID, location=LOCATION, input_data={}, function_id=SHORT_FUNCTION_NAME, ) # [END howto_operator_gcf_invoke_function] # [START howto_operator_gcf_delete] delete_task = CloudFunctionDeleteFunctionOperator(task_id="gcf_delete_task", name=FUNCTION_NAME) # [END howto_operator_gcf_delete] chain( deploy_task, deploy2_task, invoke_task, delete_task, ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?