# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that shows how to use Dataplex.
"""
from __future__ import annotations
import datetime
import os
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataplex import (
    DataplexCreateLakeOperator,
    DataplexCreateTaskOperator,
    DataplexDeleteLakeOperator,
    DataplexDeleteTaskOperator,
    DataplexGetTaskOperator,
    DataplexListTasksOperator,
)
from airflow.providers.google.cloud.operators.gcs import (
    GCSCreateBucketOperator,
    GCSDeleteBucketOperator,
    GCSSynchronizeBucketsOperator,
)
from airflow.providers.google.cloud.sensors.dataplex import DataplexTaskStateSensor
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID") 
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "project_id") 
[docs]DAG_ID = "example_dataplex" 
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}" 
[docs]SPARK_FILE_NAME = "spark_example_pi.py" 
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources" 
[docs]LAKE_ID = f"test-lake-dataplex-{ENV_ID}" 
[docs]SERVICE_ACC = f"{PROJECT_ID}@appspot.gserviceaccount.com" 
[docs]SPARK_FILE_FULL_PATH = f"gs://{BUCKET_NAME}/{SPARK_FILE_NAME}" 
[docs]DATAPLEX_TASK_ID = f"test-task-{ENV_ID}" 
[docs]TRIGGER_SPEC_TYPE = "ON_DEMAND" 
# [START howto_dataplex_configuration]
[docs]EXAMPLE_TASK_BODY = {
    "trigger_spec": {"type_": TRIGGER_SPEC_TYPE},
    "execution_spec": {"service_account": SERVICE_ACC},
    "spark": {"python_script_file": SPARK_FILE_FULL_PATH},
} 
# [END howto_dataplex_configuration]
# [START howto_dataplex_lake_configuration]
[docs]EXAMPLE_LAKE_BODY = {
    "display_name": "test_display_name",
    "labels": [],
    "description": "test_description",
    "metastore": {"service": ""},
} 
# [END howto_dataplex_lake_configuration]
with DAG(
    DAG_ID,
    start_date=datetime.datetime(2021, 1, 1),
    schedule="@once",
    tags=["example", "dataplex"],
) as dag:
[docs]    create_bucket = GCSCreateBucketOperator(
        task_id="create_bucket", bucket_name=BUCKET_NAME, project_id=PROJECT_ID
    ) 
    sync_bucket = GCSSynchronizeBucketsOperator(
        task_id="sync_bucket",
        source_bucket=RESOURCE_DATA_BUCKET,
        source_object=SPARK_FILE_NAME,
        destination_bucket=BUCKET_NAME,
        destination_object=SPARK_FILE_NAME,
        recursive=True,
    )
    # [START howto_dataplex_create_lake_operator]
    create_lake = DataplexCreateLakeOperator(
        project_id=PROJECT_ID, region=REGION, body=EXAMPLE_LAKE_BODY, lake_id=LAKE_ID, task_id="create_lake"
    )
    # [END howto_dataplex_create_lake_operator]
    # [START howto_dataplex_create_task_operator]
    create_dataplex_task = DataplexCreateTaskOperator(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        body=EXAMPLE_TASK_BODY,
        dataplex_task_id=DATAPLEX_TASK_ID,
        task_id="create_dataplex_task",
    )
    # [END howto_dataplex_create_task_operator]
    # [START howto_dataplex_async_create_task_operator]
    create_dataplex_task_async = DataplexCreateTaskOperator(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        body=EXAMPLE_TASK_BODY,
        dataplex_task_id=f"{DATAPLEX_TASK_ID}-1",
        asynchronous=True,
        task_id="create_dataplex_task_async",
    )
    # [END howto_dataplex_async_create_task_operator]
    # [START howto_dataplex_delete_task_operator]
    delete_dataplex_task_async = DataplexDeleteTaskOperator(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        dataplex_task_id=f"{DATAPLEX_TASK_ID}-1",
        task_id="delete_dataplex_task_async",
    )
    # [END howto_dataplex_delete_task_operator]
    # [START howto_dataplex_list_tasks_operator]
    list_dataplex_task = DataplexListTasksOperator(
        project_id=PROJECT_ID, region=REGION, lake_id=LAKE_ID, task_id="list_dataplex_task"
    )
    # [END howto_dataplex_list_tasks_operator]
    # [START howto_dataplex_get_task_operator]
    get_dataplex_task = DataplexGetTaskOperator(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        dataplex_task_id=DATAPLEX_TASK_ID,
        task_id="get_dataplex_task",
    )
    # [END howto_dataplex_get_task_operator]
    # [START howto_dataplex_task_state_sensor]
    dataplex_task_state = DataplexTaskStateSensor(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        dataplex_task_id=DATAPLEX_TASK_ID,
        task_id="dataplex_task_state",
    )
    # [END howto_dataplex_task_state_sensor]
    # [START howto_dataplex_delete_task_operator]
    delete_dataplex_task = DataplexDeleteTaskOperator(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        dataplex_task_id=DATAPLEX_TASK_ID,
        task_id="delete_dataplex_task",
        trigger_rule=TriggerRule.ALL_DONE,
    )
    # [END howto_dataplex_delete_task_operator]
    # [START howto_dataplex_delete_lake_operator]
    delete_lake = DataplexDeleteLakeOperator(
        project_id=PROJECT_ID,
        region=REGION,
        lake_id=LAKE_ID,
        task_id="delete_lake",
        trigger_rule=TriggerRule.ALL_DONE,
    )
    # [END howto_dataplex_delete_lake_operator]
    delete_bucket = GCSDeleteBucketOperator(
        task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE
    )
    chain(
        # TEST SETUP
        create_bucket,
        sync_bucket,
        # TEST BODY
        create_lake,
        create_dataplex_task,
        get_dataplex_task,
        list_dataplex_task,
        create_dataplex_task_async,
        delete_dataplex_task_async,
        dataplex_task_state,
        # TEST TEARDOWN
        delete_dataplex_task,
        delete_lake,
        delete_bucket,
    )
    from tests.system.utils.watcher import watcher
    # This test needs watcher in order to properly mark success/failure
    # when "tearDown" task with trigger rule is part of the DAG
    list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run  # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)