airflow.providers.google.cloud.triggers.bigquery¶
Module Contents¶
Classes¶
| BigQueryInsertJobTrigger run on the trigger worker to perform insert operation | |
| BigQueryCheckTrigger run on the trigger worker | |
| BigQueryGetDataTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class | |
| BigQueryIntervalCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class | |
| BigQueryValueCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class | |
| Initialize the BigQuery Table Existence Trigger with needed parameters | |
| Initialize the BigQuery Table Partition Existence Trigger with needed parameters | 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryInsertJobTrigger(conn_id, job_id, project_id, dataset_id=None, table_id=None, poll_interval=4.0)[source]¶
- Bases: - airflow.triggers.base.BaseTrigger- BigQueryInsertJobTrigger run on the trigger worker to perform insert operation - Parameters
- conn_id (str) – Reference to google cloud connection id 
- job_id (str | None) – The ID of the job. It will be suffixed with hash of job configuration 
- project_id (str | None) – Google Cloud Project where the job is running 
- dataset_id (str | None) – The dataset ID of the requested table. (templated) 
- table_id (str | None) – The table ID of the requested table. (templated) 
- poll_interval (float) – polling period in seconds to check for the status 
 
 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryCheckTrigger(conn_id, job_id, project_id, dataset_id=None, table_id=None, poll_interval=4.0)[source]¶
- Bases: - BigQueryInsertJobTrigger- BigQueryCheckTrigger run on the trigger worker 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryGetDataTrigger(as_dict=False, **kwargs)[source]¶
- Bases: - BigQueryInsertJobTrigger- BigQueryGetDataTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class - Parameters
- as_dict (bool) – if True returns the result as a list of dictionaries, otherwise as list of lists (default: False). 
 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryIntervalCheckTrigger(conn_id, first_job_id, second_job_id, project_id, table, metrics_thresholds, date_filter_column='ds', days_back=-7, ratio_formula='max_over_min', ignore_zero=True, dataset_id=None, table_id=None, poll_interval=4.0)[source]¶
- Bases: - BigQueryInsertJobTrigger- BigQueryIntervalCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class - Parameters
- conn_id (str) – Reference to google cloud connection id 
- first_job_id (str) – The ID of the job 1 performed 
- second_job_id (str) – The ID of the job 2 performed 
- project_id (str | None) – Google Cloud Project where the job is running 
- dataset_id (str | None) – The dataset ID of the requested table. (templated) 
- table (str) – table name 
- metrics_thresholds (dict[str, int]) – dictionary of ratios indexed by metrics 
- date_filter_column (str | None) – column name 
- days_back (SupportsAbs[int]) – number of days between ds and the ds we want to check against 
- ratio_formula (str) – ration formula 
- ignore_zero (bool) – boolean value to consider zero or not 
- table_id (str | None) – The table ID of the requested table. (templated) 
- poll_interval (float) – polling period in seconds to check for the status 
 
 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryValueCheckTrigger(conn_id, sql, pass_value, job_id, project_id, tolerance=None, dataset_id=None, table_id=None, poll_interval=4.0)[source]¶
- Bases: - BigQueryInsertJobTrigger- BigQueryValueCheckTrigger run on the trigger worker, inherits from BigQueryInsertJobTrigger class - Parameters
- conn_id (str) – Reference to google cloud connection id 
- sql (str) – the sql to be executed 
- job_id (str | None) – The ID of the job 
- project_id (str | None) – Google Cloud Project where the job is running 
- tolerance (Any) – certain metrics for tolerance 
- dataset_id (str | None) – The dataset ID of the requested table. (templated) 
- table_id (str | None) – The table ID of the requested table. (templated) 
- poll_interval (float) – polling period in seconds to check for the status 
 
 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryTableExistenceTrigger(project_id, dataset_id, table_id, gcp_conn_id, hook_params, poll_interval=4.0)[source]¶
- Bases: - airflow.triggers.base.BaseTrigger- Initialize the BigQuery Table Existence Trigger with needed parameters - Parameters
- project_id (str) – Google Cloud Project where the job is running 
- dataset_id (str) – The dataset ID of the requested table. 
- table_id (str) – The table ID of the requested table. 
- gcp_conn_id (str) – Reference to google cloud connection id 
- poll_interval (float) – polling period in seconds to check for the status 
 
 
- class airflow.providers.google.cloud.triggers.bigquery.BigQueryTablePartitionExistenceTrigger(partition_id, **kwargs)[source]¶
- Bases: - BigQueryTableExistenceTrigger- Initialize the BigQuery Table Partition Existence Trigger with needed parameters :param partition_id: The name of the partition to check the existence of. :param project_id: Google Cloud Project where the job is running :param dataset_id: The dataset ID of the requested table. :param table_id: The table ID of the requested table. :param gcp_conn_id: Reference to google cloud connection id :param hook_params: params for hook :param poll_interval: polling period in seconds to check for the status 
