#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""This module contains Google AutoML links."""
from __future__ import annotations
from typing import TYPE_CHECKING
from airflow.providers.google.cloud.links.base import BaseGoogleLink
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]AUTOML_BASE_LINK = "https://console.cloud.google.com/automl-tables"
[docs]AUTOML_DATASET_LINK = (
AUTOML_BASE_LINK + "/locations/{location}/datasets/{dataset_id}/schemav2?project={project_id}"
)
[docs]AUTOML_DATASET_LIST_LINK = AUTOML_BASE_LINK + "/datasets?project={project_id}"
[docs]AUTOML_MODEL_LINK = (
AUTOML_BASE_LINK
+ "/locations/{location}/datasets/{dataset_id};modelId={model_id}/evaluate?project={project_id}"
)
[docs]AUTOML_MODEL_TRAIN_LINK = (
AUTOML_BASE_LINK + "/locations/{location}/datasets/{dataset_id}/train?project={project_id}"
)
[docs]AUTOML_MODEL_PREDICT_LINK = (
AUTOML_BASE_LINK
+ "/locations/{location}/datasets/{dataset_id};modelId={model_id}/predict?project={project_id}"
)
[docs]class AutoMLDatasetLink(BaseGoogleLink):
"""Helper class for constructing AutoML Dataset link"""
[docs] name = "AutoML Dataset"
@staticmethod
[docs] def persist(
context: Context,
task_instance,
dataset_id: str,
project_id: str,
):
task_instance.xcom_push(
context,
key=AutoMLDatasetLink.key,
value={"location": task_instance.location, "dataset_id": dataset_id, "project_id": project_id},
)
[docs]class AutoMLDatasetListLink(BaseGoogleLink):
"""Helper class for constructing AutoML Dataset List link"""
[docs] name = "AutoML Dataset List"
[docs] key = "automl_dataset_list"
@staticmethod
[docs] def persist(
context: Context,
task_instance,
project_id: str,
):
task_instance.xcom_push(
context,
key=AutoMLDatasetListLink.key,
value={
"project_id": project_id,
},
)
[docs]class AutoMLModelLink(BaseGoogleLink):
"""Helper class for constructing AutoML Model link"""
@staticmethod
[docs] def persist(
context: Context,
task_instance,
dataset_id: str,
model_id: str,
project_id: str,
):
task_instance.xcom_push(
context,
key=AutoMLModelLink.key,
value={
"location": task_instance.location,
"dataset_id": dataset_id,
"model_id": model_id,
"project_id": project_id,
},
)
[docs]class AutoMLModelTrainLink(BaseGoogleLink):
"""Helper class for constructing AutoML Model Train link"""
[docs] name = "AutoML Model Train"
[docs] key = "automl_model_train"
@staticmethod
[docs] def persist(
context: Context,
task_instance,
project_id: str,
):
task_instance.xcom_push(
context,
key=AutoMLModelTrainLink.key,
value={
"location": task_instance.location,
"dataset_id": task_instance.model["dataset_id"],
"project_id": project_id,
},
)
[docs]class AutoMLModelPredictLink(BaseGoogleLink):
"""Helper class for constructing AutoML Model Predict link"""
[docs] name = "AutoML Model Predict"
[docs] key = "automl_model_predict"
@staticmethod
[docs] def persist(
context: Context,
task_instance,
model_id: str,
project_id: str,
):
task_instance.xcom_push(
context,
key=AutoMLModelPredictLink.key,
value={
"location": task_instance.location,
"dataset_id": "-",
"model_id": model_id,
"project_id": project_id,
},
)