# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import base64
import os
import warnings
from tempfile import TemporaryDirectory
from typing import TYPE_CHECKING, Any, Callable, Literal, Sequence
from airflow.decorators.base import DecoratedOperator, task_decorator_factory
from airflow.exceptions import AirflowException, AirflowProviderDeprecationWarning
from airflow.providers.common.compat.standard.utils import write_python_script
from airflow.providers.docker.operators.docker import DockerOperator
if TYPE_CHECKING:
from airflow.decorators.base import TaskDecorator
from airflow.utils.context import Context
[docs] Serializer = Literal["pickle", "dill", "cloudpickle"]
try:
from airflow.providers.common.compat.standard.operators import _SERIALIZERS
except ImportError:
import logging
import lazy_object_proxy
[docs] log = logging.getLogger(__name__)
def _load_pickle():
import pickle
return pickle
def _load_dill():
try:
import dill
except ModuleNotFoundError:
log.error("Unable to import `dill` module. Please please make sure that it installed.")
raise
return dill
def _load_cloudpickle():
try:
import cloudpickle
except ModuleNotFoundError:
log.error(
"Unable to import `cloudpickle` module. "
"Please install it with: pip install 'apache-airflow[cloudpickle]'"
)
raise
return cloudpickle
_SERIALIZERS: dict[Serializer, Any] = { # type: ignore[no-redef]
"pickle": lazy_object_proxy.Proxy(_load_pickle),
"dill": lazy_object_proxy.Proxy(_load_dill),
"cloudpickle": lazy_object_proxy.Proxy(_load_cloudpickle),
}
def _generate_decode_command(env_var, file, python_command):
# We don't need `f.close()` as the interpreter is about to exit anyway
return (
f'{python_command} -c "import base64, os;'
rf"x = base64.b64decode(os.environ[\"{env_var}\"]);"
rf'f = open(\"{file}\", \"wb\"); f.write(x);"'
)
def _b64_encode_file(filename):
with open(filename, "rb") as file_to_encode:
return base64.b64encode(file_to_encode.read())
class _DockerDecoratedOperator(DecoratedOperator, DockerOperator):
"""
Wraps a Python callable and captures args/kwargs when called for execution.
:param python_callable: A reference to an object that is callable
:param python: Python binary name to use
:param expect_airflow: whether to expect airflow to be installed in the docker environment. if this
one is specified, the script to run callable will attempt to load Airflow macros.
:param op_kwargs: a dictionary of keyword arguments that will get unpacked
in your function (templated)
:param op_args: a list of positional arguments that will get unpacked when
calling your callable (templated)
:param multiple_outputs: if set, function return value will be
unrolled to multiple XCom values. Dict will unroll to xcom values with keys as keys.
Defaults to False.
:param serializer: Which serializer use to serialize the args and result. It can be one of the following:
- ``"pickle"``: (default) Use pickle for serialization. Included in the Python Standard Library.
- ``"cloudpickle"``: Use cloudpickle for serialize more complex types,
this requires to include cloudpickle in your requirements.
- ``"dill"``: Use dill for serialize more complex types,
this requires to include dill in your requirements.
:param use_dill: Deprecated, use ``serializer`` instead. Whether to use dill to serialize
the args and result (pickle is default). This allows more complex types
but requires you to include dill in your requirements.
"""
custom_operator_name = "@task.docker"
template_fields: Sequence[str] = (*DockerOperator.template_fields, "op_args", "op_kwargs")
def __init__(
self,
use_dill=False,
python_command="python3",
expect_airflow: bool = True,
serializer: Serializer | None = None,
**kwargs,
) -> None:
if use_dill:
warnings.warn(
"`use_dill` is deprecated and will be removed in a future version. "
"Please provide serializer='dill' instead.",
AirflowProviderDeprecationWarning,
stacklevel=3,
)
if serializer:
raise AirflowException(
"Both 'use_dill' and 'serializer' parameters are set. Please set only one of them"
)
serializer = "dill"
serializer = serializer or "pickle"
if serializer not in _SERIALIZERS:
msg = (
f"Unsupported serializer {serializer!r}. "
f"Expected one of {', '.join(map(repr, _SERIALIZERS))}"
)
raise AirflowException(msg)
command = "placeholder command"
self.python_command = python_command
self.expect_airflow = expect_airflow
self.use_dill = serializer == "dill"
self.serializer: Serializer = serializer
super().__init__(
command=command, retrieve_output=True, retrieve_output_path="/tmp/script.out", **kwargs
)
def generate_command(self):
return (
f"""bash -cx '{_generate_decode_command("__PYTHON_SCRIPT", "/tmp/script.py",
self.python_command)} &&"""
f'{_generate_decode_command("__PYTHON_INPUT", "/tmp/script.in", self.python_command)} &&'
f"{self.python_command} /tmp/script.py /tmp/script.in /tmp/script.out none /tmp/script.out'"
)
def execute(self, context: Context):
with TemporaryDirectory(prefix="venv") as tmp_dir:
input_filename = os.path.join(tmp_dir, "script.in")
script_filename = os.path.join(tmp_dir, "script.py")
with open(input_filename, "wb") as file:
if self.op_args or self.op_kwargs:
self.pickling_library.dump({"args": self.op_args, "kwargs": self.op_kwargs}, file)
py_source = self.get_python_source()
write_python_script(
jinja_context={
"op_args": self.op_args,
"op_kwargs": self.op_kwargs,
"pickling_library": self.pickling_library.__name__,
"python_callable": self.python_callable.__name__,
"python_callable_source": py_source,
"expect_airflow": self.expect_airflow,
"string_args_global": False,
},
filename=script_filename,
)
# Pass the python script to be executed, and the input args, via environment variables. This is
# more than slightly hacky, but it means it can work when Airflow itself is in the same Docker
# engine where this task is going to run (unlike say trying to mount a file in)
self.environment["__PYTHON_SCRIPT"] = _b64_encode_file(script_filename)
if self.op_args or self.op_kwargs:
self.environment["__PYTHON_INPUT"] = _b64_encode_file(input_filename)
else:
self.environment["__PYTHON_INPUT"] = ""
self.command = self.generate_command()
return super().execute(context)
@property
def pickling_library(self):
return _SERIALIZERS[self.serializer]
[docs]def docker_task(
python_callable: Callable | None = None,
multiple_outputs: bool | None = None,
**kwargs,
) -> TaskDecorator:
"""
Python operator decorator; wraps a function into an Airflow operator.
Also accepts any argument that DockerOperator will via ``kwargs``. Can be reused in a single DAG.
:param python_callable: Function to decorate
:param multiple_outputs: If set, function return value will be unrolled to multiple XCom values.
Dict will unroll to XCom values with keys as XCom keys. Defaults to False.
"""
return task_decorator_factory(
python_callable=python_callable,
multiple_outputs=multiple_outputs,
decorated_operator_class=_DockerDecoratedOperator,
**kwargs,
)