Source code for airflow.providers.docker.decorators.docker

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import base64
import inspect
import os
import pickle
from tempfile import TemporaryDirectory
from textwrap import dedent
from typing import TYPE_CHECKING, Callable, Optional, Sequence

import dill

from airflow.decorators.base import DecoratedOperator, task_decorator_factory
from airflow.providers.docker.operators.docker import DockerOperator
from airflow.utils.python_virtualenv import remove_task_decorator, write_python_script

    from airflow.decorators.base import TaskDecorator
    from airflow.utils.context import Context

def _generate_decode_command(env_var, file, python_command):
    # We don't need `f.close()` as the interpreter is about to exit anyway
    return (
        f'{python_command} -c "import base64, os;'
        rf'x = base64.b64decode(os.environ[\"{env_var}\"]);'
        rf'f = open(\"{file}\", \"wb\"); f.write(x);"'

def _b64_encode_file(filename):
    with open(filename, "rb") as file_to_encode:
        return base64.b64encode(

class _DockerDecoratedOperator(DecoratedOperator, DockerOperator):
    Wraps a Python callable and captures args/kwargs when called for execution.

    :param python_callable: A reference to an object that is callable
    :param op_kwargs: a dictionary of keyword arguments that will get unpacked
        in your function (templated)
    :param op_args: a list of positional arguments that will get unpacked when
        calling your callable (templated)
    :param multiple_outputs: if set, function return value will be
        unrolled to multiple XCom values. Dict will unroll to xcom values with keys as keys.
        Defaults to False.

    template_fields: Sequence[str] = ('op_args', 'op_kwargs')

    # since we won't mutate the arguments, we should just do the shallow copy
    # there are some cases we can't deepcopy the objects (e.g protobuf).
    shallow_copy_attrs: Sequence[str] = ('python_callable',)

    def __init__(
    ) -> None:
        command = "dummy command"
        self.python_command = python_command
        self.pickling_library = dill if use_dill else pickle
            command=command, retrieve_output=True, retrieve_output_path="/tmp/script.out", **kwargs

    def generate_command(self):
        return (
            f"""bash -cx  '{_generate_decode_command("__PYTHON_SCRIPT", "/tmp/",
                                                     self.python_command)} &&"""
            f'{_generate_decode_command("__PYTHON_INPUT", "/tmp/", self.python_command)} &&'
            f'{self.python_command} /tmp/ /tmp/ /tmp/script.out\''

    def execute(self, context: 'Context'):
        with TemporaryDirectory(prefix='venv') as tmp_dir:
            input_filename = os.path.join(tmp_dir, '')
            script_filename = os.path.join(tmp_dir, '')

            with open(input_filename, 'wb') as file:
                if self.op_args or self.op_kwargs:
                    self.pickling_library.dump({'args': self.op_args, 'kwargs': self.op_kwargs}, file)
            py_source = self._get_python_source()

            # Pass the python script to be executed, and the input args, via environment variables. This is
            # more than slightly hacky, but it means it can work when Airflow itself is in the same Docker
            # engine where this task is going to run (unlike say trying to mount a file in)
            self.environment["__PYTHON_SCRIPT"] = _b64_encode_file(script_filename)
            if self.op_args or self.op_kwargs:
                self.environment["__PYTHON_INPUT"] = _b64_encode_file(input_filename)
                self.environment["__PYTHON_INPUT"] = ""

            self.command = self.generate_command()
            return super().execute(context)

    def _get_python_source(self):
        raw_source = inspect.getsource(self.python_callable)
        res = dedent(raw_source)
        res = remove_task_decorator(res, "@task.docker")
        return res

[docs]def docker_task( python_callable: Optional[Callable] = None, multiple_outputs: Optional[bool] = None, **kwargs, ) -> "TaskDecorator": """ Python operator decorator. Wraps a function into an Airflow operator. Also accepts any argument that DockerOperator will via ``kwargs``. Can be reused in a single DAG. :param python_callable: Function to decorate :param multiple_outputs: If set, function return value will be unrolled to multiple XCom values. Dict will unroll to XCom values with keys as XCom keys. Defaults to False. """ return task_decorator_factory( python_callable=python_callable, multiple_outputs=multiple_outputs, decorated_operator_class=_DockerDecoratedOperator, **kwargs,

Was this entry helpful?