Source code for airflow.providers.docker.operators.docker_swarm

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Run ephemeral Docker Swarm services."""
from __future__ import annotations

from typing import TYPE_CHECKING

from docker import types

from airflow.exceptions import AirflowException
from airflow.providers.docker.operators.docker import DockerOperator
from airflow.utils.strings import get_random_string

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class DockerSwarmOperator(DockerOperator): """ Execute a command as an ephemeral docker swarm service. Example use-case - Using Docker Swarm orchestration to make one-time scripts highly available. A temporary directory is created on the host and mounted into a container to allow storing files that together exceed the default disk size of 10GB in a container. The path to the mounted directory can be accessed via the environment variable ``AIRFLOW_TMP_DIR``. If a login to a private registry is required prior to pulling the image, a Docker connection needs to be configured in Airflow and the connection ID be provided with the parameter ``docker_conn_id``. :param image: Docker image from which to create the container. If image tag is omitted, "latest" will be used. :param api_version: Remote API version. Set to ``auto`` to automatically detect the server's version. :param auto_remove: Auto-removal of the container on daemon side when the container's process exits. The default is False. :param command: Command to be run in the container. (templated) :param docker_url: URL of the host running the docker daemon. Default is unix://var/run/docker.sock :param environment: Environment variables to set in the container. (templated) :param force_pull: Pull the docker image on every run. Default is False. :param mem_limit: Maximum amount of memory the container can use. Either a float value, which represents the limit in bytes, or a string like ``128m`` or ``1g``. :param tls_ca_cert: Path to a PEM-encoded certificate authority to secure the docker connection. :param tls_client_cert: Path to the PEM-encoded certificate used to authenticate docker client. :param tls_client_key: Path to the PEM-encoded key used to authenticate docker client. :param tls_hostname: Hostname to match against the docker server certificate or False to disable the check. :param tls_ssl_version: Version of SSL to use when communicating with docker daemon. :param tmp_dir: Mount point inside the container to a temporary directory created on the host by the operator. The path is also made available via the environment variable ``AIRFLOW_TMP_DIR`` inside the container. :param user: Default user inside the docker container. :param docker_conn_id: The :ref:`Docker connection id <howto/connection:docker>` :param tty: Allocate pseudo-TTY to the container of this service This needs to be set see logs of the Docker container / service. :param enable_logging: Show the application's logs in operator's logs. Supported only if the Docker engine is using json-file or journald logging drivers. The `tty` parameter should be set to use this with Python applications. :param configs: List of docker configs to be exposed to the containers of the swarm service. The configs are ConfigReference objects as per the docker api [https://docker-py.readthedocs.io/en/stable/services.html#docker.models.services.ServiceCollection.create]_ :param secrets: List of docker secrets to be exposed to the containers of the swarm service. The secrets are SecretReference objects as per the docker create_service api. [https://docker-py.readthedocs.io/en/stable/services.html#docker.models.services.ServiceCollection.create]_ :param mode: Indicate whether a service should be deployed as a replicated or global service, and associated parameters :param networks: List of network names or IDs or NetworkAttachmentConfig to attach the service to. :param placement: Placement instructions for the scheduler. If a list is passed instead, it is assumed to be a list of constraints as part of a Placement object. """ def __init__( self, *, image: str, enable_logging: bool = True, configs: list[types.ConfigReference] | None = None, secrets: list[types.SecretReference] | None = None, mode: types.ServiceMode | None = None, networks: list[str | types.NetworkAttachmentConfig] | None = None, placement: types.Placement | list[types.Placement] | None = None, **kwargs, ) -> None: super().__init__(image=image, **kwargs) self.enable_logging = enable_logging self.service = None self.configs = configs self.secrets = secrets self.mode = mode self.networks = networks self.placement = placement
[docs] def execute(self, context: Context) -> None: self.environment["AIRFLOW_TMP_DIR"] = self.tmp_dir return self._run_service()
def _run_service(self) -> None: self.log.info("Starting docker service from image %s", self.image) self.service = self.cli.create_service( types.TaskTemplate( container_spec=types.ContainerSpec( image=self.image, command=self.format_command(self.command), mounts=self.mounts, env=self.environment, user=self.user, tty=self.tty, configs=self.configs, secrets=self.secrets, ), restart_policy=types.RestartPolicy(condition="none"), resources=types.Resources(mem_limit=self.mem_limit), networks=self.networks, placement=self.placement, ), name=f"airflow-{get_random_string()}", labels={"name": f"airflow__{self.dag_id}__{self.task_id}"}, mode=self.mode, ) if self.service is None: raise Exception("Service should be set here") self.log.info("Service started: %s", str(self.service)) # wait for the service to start the task while not self.cli.tasks(filters={"service": self.service["ID"]}): continue if self.enable_logging: self._stream_logs_to_output() while True: if self._has_service_terminated(): self.log.info("Service status before exiting: %s", self._service_status()) break self.log.info("auto_removeauto_removeauto_removeauto_removeauto_remove : %s", str(self.auto_remove)) if self.service and self._service_status() != "complete": if self.auto_remove == "success": self.cli.remove_service(self.service["ID"]) raise AirflowException(f"Service did not complete: {self.service!r}") elif self.auto_remove == "success": if not self.service: raise Exception("The 'service' should be initialized before!") self.cli.remove_service(self.service["ID"]) def _service_status(self) -> str | None: if not self.service: raise Exception("The 'service' should be initialized before!") return self.cli.tasks(filters={"service": self.service["ID"]})[0]["Status"]["State"] def _has_service_terminated(self) -> bool: status = self._service_status() return status in ["complete", "failed", "shutdown", "rejected", "orphaned", "remove"] def _stream_logs_to_output(self) -> None: if not self.service: raise Exception("The 'service' should be initialized before!") logs = self.cli.service_logs( self.service["ID"], follow=True, stdout=True, stderr=True, is_tty=self.tty ) line = "" for log in logs: try: log = log.decode() except UnicodeDecodeError: continue if log == "\n": self.log.info(line) line = "" else: line += log # flush any remaining log stream if line: self.log.info(line)
[docs] def on_kill(self) -> None: if self.hook.client_created and self.service is not None: self.log.info("Removing docker service: %s", self.service["ID"]) self.cli.remove_service(self.service["ID"])

Was this entry helpful?