Source code for tests.system.databricks.example_databricks_workflow

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""Example DAG for using the DatabricksWorkflowTaskGroup and DatabricksNotebookOperator."""

from __future__ import annotations

import os
from datetime import timedelta

from airflow.models.dag import DAG
from airflow.providers.databricks.operators.databricks import (
    DatabricksNotebookOperator,
    DatabricksTaskOperator,
)
from airflow.providers.databricks.operators.databricks_workflow import DatabricksWorkflowTaskGroup
from airflow.utils.timezone import datetime

[docs]EXECUTION_TIMEOUT = int(os.getenv("EXECUTION_TIMEOUT", 6))
[docs]DATABRICKS_CONN_ID = os.getenv("DATABRICKS_CONN_ID", "databricks_default")
[docs]DATABRICKS_NOTIFICATION_EMAIL = os.getenv("DATABRICKS_NOTIFICATION_EMAIL", "your_email@serviceprovider.com")
[docs]GROUP_ID = os.getenv("DATABRICKS_GROUP_ID", "1234").replace(".", "_")
[docs]USER = os.environ.get("USER")
[docs]QUERY_ID = os.environ.get("QUERY_ID", "d3773b5a-56f9-422c-ae60-048eaa90aa33")
[docs]WAREHOUSE_ID = os.environ.get("WAREHOUSE_ID", "368fe30b92228713")
# job_cluster_spec example for Databricks on Azure
[docs]job_cluster_spec = [ { "job_cluster_key": "Shared_job_cluster", "new_cluster": { "cluster_name": "", "spark_version": "11.3.x-scala2.12", "azure_attributes": { "availability": "ON_DEMAND_AZURE", "spot_bid_max_price": -1, }, "num_workers": 1, "spark_conf": {}, "node_type_id": "Standard_D3_v2", "ssh_public_keys": [], "custom_tags": {}, "spark_env_vars": {"PYSPARK_PYTHON": "/databricks/python3/bin/python3"}, "cluster_source": "JOB", "init_scripts": [], }, } ]
[docs]dag = DAG( dag_id="example_databricks_workflow", start_date=datetime(2022, 1, 1), schedule=None, catchup=False, tags=["example", "databricks"], )
with dag: # [START howto_databricks_workflow_notebook]
[docs] task_group = DatabricksWorkflowTaskGroup( group_id=f"test_workflow_{USER}_{GROUP_ID}", databricks_conn_id=DATABRICKS_CONN_ID, job_clusters=job_cluster_spec, notebook_params={"ts": "{{ ts }}"}, notebook_packages=[ { "pypi": { "package": "simplejson==3.18.0", # Pin specification version of a package like this. "repo": "https://pypi.org/simple", # You can specify your required Pypi index here. } }, ], extra_job_params={ "email_notifications": { "on_start": [DATABRICKS_NOTIFICATION_EMAIL], }, }, )
with task_group: notebook_1 = DatabricksNotebookOperator( task_id="workflow_notebook_1", databricks_conn_id=DATABRICKS_CONN_ID, notebook_path="/Shared/Notebook_1", notebook_packages=[{"pypi": {"package": "Faker"}}], source="WORKSPACE", job_cluster_key="Shared_job_cluster", execution_timeout=timedelta(seconds=600), ) notebook_2 = DatabricksNotebookOperator( task_id="workflow_notebook_2", databricks_conn_id=DATABRICKS_CONN_ID, notebook_path="/Shared/Notebook_2", source="WORKSPACE", job_cluster_key="Shared_job_cluster", notebook_params={"foo": "bar", "ds": "{{ ds }}"}, ) task_operator_nb_1 = DatabricksTaskOperator( task_id="nb_1", databricks_conn_id=DATABRICKS_CONN_ID, job_cluster_key="Shared_job_cluster", task_config={ "notebook_task": { "notebook_path": "/Shared/Notebook_1", "source": "WORKSPACE", }, "libraries": [ {"pypi": {"package": "Faker"}}, ], }, ) sql_query = DatabricksTaskOperator( task_id="sql_query", databricks_conn_id=DATABRICKS_CONN_ID, task_config={ "sql_task": { "query": { "query_id": QUERY_ID, }, "warehouse_id": WAREHOUSE_ID, } }, ) notebook_1 >> notebook_2 >> task_operator_nb_1 >> sql_query # [END howto_databricks_workflow_notebook] from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?