Source code for airflow.providers.databricks.plugins.databricks_workflow

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from __future__ import annotations

import logging
import os
from typing import TYPE_CHECKING, Any, cast
from urllib.parse import unquote

from flask import current_app, flash, redirect, request, url_for
from flask_appbuilder.api import expose

from airflow.exceptions import AirflowException, TaskInstanceNotFound
from airflow.models import BaseOperator, BaseOperatorLink
from airflow.models.dag import DAG, clear_task_instances
from airflow.models.dagrun import DagRun
from airflow.models.taskinstance import TaskInstance, TaskInstanceKey
from airflow.models.xcom import XCom
from airflow.plugins_manager import AirflowPlugin
from airflow.providers.databricks.hooks.databricks import DatabricksHook
from airflow.utils.airflow_flask_app import AirflowApp
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.utils.session import NEW_SESSION, provide_session
from airflow.utils.state import TaskInstanceState
from airflow.utils.task_group import TaskGroup
from airflow.www import auth
from airflow.www.views import AirflowBaseView

if TYPE_CHECKING:
    from sqlalchemy.orm.session import Session


[docs]REPAIR_WAIT_ATTEMPTS = os.getenv("DATABRICKS_REPAIR_WAIT_ATTEMPTS", 20)
[docs]REPAIR_WAIT_DELAY = os.getenv("DATABRICKS_REPAIR_WAIT_DELAY", 0.5)
[docs]airflow_app = cast(AirflowApp, current_app)
[docs]def get_auth_decorator(): from airflow.auth.managers.models.resource_details import DagAccessEntity return auth.has_access_dag("POST", DagAccessEntity.RUN)
def _get_databricks_task_id(task: BaseOperator) -> str: """ Get the databricks task ID using dag_id and task_id. removes illegal characters. :param task: The task to get the databricks task ID for. :return: The databricks task ID. """ return f"{task.dag_id}__{task.task_id.replace('.', '__')}"
[docs]def get_databricks_task_ids( group_id: str, task_map: dict[str, BaseOperator], log: logging.Logger ) -> list[str]: """ Return a list of all Databricks task IDs for a dictionary of Airflow tasks. :param group_id: The task group ID. :param task_map: A dictionary mapping task IDs to BaseOperator instances. :param log: The logger to use for logging. :return: A list of Databricks task IDs for the given task group. """ task_ids = [] log.debug("Getting databricks task ids for group %s", group_id) for task_id, task in task_map.items(): if task_id == f"{group_id}.launch": continue databricks_task_id = _get_databricks_task_id(task) log.debug("databricks task id for task %s is %s", task_id, databricks_task_id) task_ids.append(databricks_task_id) return task_ids
@provide_session def _get_dagrun(dag: DAG, run_id: str, session: Session | None = None) -> DagRun: """ Retrieve the DagRun object associated with the specified DAG and run_id. :param dag: The DAG object associated with the DagRun to retrieve. :param run_id: The run_id associated with the DagRun to retrieve. :param session: The SQLAlchemy session to use for the query. If None, uses the default session. :return: The DagRun object associated with the specified DAG and run_id. """ if not session: raise AirflowException("Session not provided.") return session.query(DagRun).filter(DagRun.dag_id == dag.dag_id, DagRun.run_id == run_id).first() @provide_session def _clear_task_instances( dag_id: str, run_id: str, task_ids: list[str], log: logging.Logger, session: Session | None = None ) -> None: dag = airflow_app.dag_bag.get_dag(dag_id) log.debug("task_ids %s to clear", str(task_ids)) dr: DagRun = _get_dagrun(dag, run_id, session=session) tis_to_clear = [ti for ti in dr.get_task_instances() if _get_databricks_task_id(ti) in task_ids] clear_task_instances(tis_to_clear, session) def _repair_task( databricks_conn_id: str, databricks_run_id: int, tasks_to_repair: list[str], logger: logging.Logger, ) -> int: """ Repair a Databricks task using the Databricks API. This function allows the Airflow retry function to create a repair job for Databricks. It uses the Databricks API to get the latest repair ID before sending the repair query. :param databricks_conn_id: The Databricks connection ID. :param databricks_run_id: The Databricks run ID. :param tasks_to_repair: A list of Databricks task IDs to repair. :param logger: The logger to use for logging. :return: None """ hook = DatabricksHook(databricks_conn_id=databricks_conn_id) repair_history_id = hook.get_latest_repair_id(databricks_run_id) logger.debug("Latest repair ID is %s", repair_history_id) logger.debug( "Sending repair query for tasks %s on run %s", tasks_to_repair, databricks_run_id, ) repair_json = { "run_id": databricks_run_id, "latest_repair_id": repair_history_id, "rerun_tasks": tasks_to_repair, } return hook.repair_run(repair_json)
[docs]def get_launch_task_id(task_group: TaskGroup) -> str: """ Retrieve the launch task ID from the current task group or a parent task group, recursively. :param task_group: Task Group to be inspected :return: launch Task ID """ try: launch_task_id = task_group.get_child_by_label("launch").task_id # type: ignore[attr-defined] except KeyError as e: if not task_group.parent_group: raise AirflowException("No launch task can be found in the task group.") from e launch_task_id = get_launch_task_id(task_group.parent_group) return launch_task_id
def _get_launch_task_key(current_task_key: TaskInstanceKey, task_id: str) -> TaskInstanceKey: """ Return the task key for the launch task. This allows us to gather databricks Metadata even if the current task has failed (since tasks only create xcom values if they succeed). :param current_task_key: The task key for the current task. :param task_id: The task ID for the current task. :return: The task key for the launch task. """ if task_id: return TaskInstanceKey( dag_id=current_task_key.dag_id, task_id=task_id, run_id=current_task_key.run_id, try_number=current_task_key.try_number, ) return current_task_key @provide_session
[docs]def get_task_instance(operator: BaseOperator, dttm, session: Session = NEW_SESSION) -> TaskInstance: dag_id = operator.dag.dag_id dag_run = DagRun.find(dag_id, execution_date=dttm)[0] ti = ( session.query(TaskInstance) .filter( TaskInstance.dag_id == dag_id, TaskInstance.run_id == dag_run.run_id, TaskInstance.task_id == operator.task_id, ) .one_or_none() ) if not ti: raise TaskInstanceNotFound("Task instance not found") return ti
[docs]def get_xcom_result( ti_key: TaskInstanceKey, key: str, ) -> Any: result = XCom.get_value( ti_key=ti_key, key=key, ) from airflow.providers.databricks.operators.databricks_workflow import WorkflowRunMetadata return WorkflowRunMetadata(**result)
[docs]class RepairDatabricksTasks(AirflowBaseView, LoggingMixin): """Repair databricks tasks from Airflow."""
[docs] default_view = "repair"
@expose("/repair_databricks_job/<string:dag_id>/<string:run_id>", methods=("GET",)) @get_auth_decorator()
[docs] def repair(self, dag_id: str, run_id: str): return_url = self._get_return_url(dag_id, run_id) tasks_to_repair = request.values.get("tasks_to_repair") self.log.info("Tasks to repair: %s", tasks_to_repair) if not tasks_to_repair: flash("No tasks to repair. Not sending repair request.") return redirect(return_url) databricks_conn_id = request.values.get("databricks_conn_id") databricks_run_id = request.values.get("databricks_run_id") if not databricks_conn_id: flash("No Databricks connection ID provided. Cannot repair tasks.") return redirect(return_url) if not databricks_run_id: flash("No Databricks run ID provided. Cannot repair tasks.") return redirect(return_url) self.log.info("Repairing databricks job %s", databricks_run_id) res = _repair_task( databricks_conn_id=databricks_conn_id, databricks_run_id=int(databricks_run_id), tasks_to_repair=tasks_to_repair.split(","), logger=self.log, ) self.log.info("Repairing databricks job query for run %s sent", databricks_run_id) self.log.info("Clearing tasks to rerun in airflow") run_id = unquote(run_id) _clear_task_instances(dag_id, run_id, tasks_to_repair.split(","), self.log) flash(f"Databricks repair job is starting!: {res}") return redirect(return_url)
@staticmethod def _get_return_url(dag_id: str, run_id: str) -> str: return url_for("Airflow.grid", dag_id=dag_id, dag_run_id=run_id)
[docs]repair_databricks_view = RepairDatabricksTasks()
[docs]repair_databricks_package = { "view": repair_databricks_view, }
[docs]class DatabricksWorkflowPlugin(AirflowPlugin): """ Databricks Workflows plugin for Airflow. .. seealso:: For more information on how to use this plugin, take a look at the guide: :ref:`howto/plugin:DatabricksWorkflowPlugin` """
[docs] name = "databricks_workflow"
[docs] appbuilder_views = [repair_databricks_package]

Was this entry helpful?