Source code for tests.system.providers.databricks.example_databricks_sensors
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import os
import textwrap
from datetime import datetime
from airflow import DAG
from airflow.providers.databricks.sensors.databricks_partition import DatabricksPartitionSensor
from airflow.providers.databricks.sensors.databricks_sql import DatabricksSqlSensor
# [Env variable to be used from the OS]
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
# [DAG name to be shown on Airflow UI]
[docs]DAG_ID = "example_databricks_sensor"
with DAG(
dag_id=DAG_ID,
schedule="@daily",
start_date=datetime(2021, 1, 1),
tags=["example"],
catchup=False,
) as dag:
dag.doc_md = textwrap.dedent(
"""
This is an example DAG which uses the DatabricksSqlSensor
sensor. The example task in the DAG executes the provided
SQL query against the Databricks SQL warehouse and if a
result is returned, the sensor returns True/succeeds.
If no results are returned, the sensor returns False/
fails.
"""
)
# [START howto_sensor_databricks_connection_setup]
# Connection string setup for Databricks workspace.
[docs] connection_id = "databricks_default"
sql_warehouse_name = "Starter Warehouse"
# [END howto_sensor_databricks_connection_setup]
# [START howto_sensor_databricks_sql]
# Example of using the Databricks SQL Sensor to check existence of data in a table.
sql_sensor = DatabricksSqlSensor(
databricks_conn_id=connection_id,
sql_warehouse_name=sql_warehouse_name,
catalog="hive_metastore",
task_id="sql_sensor_task",
sql="select * from hive_metastore.temp.sample_table_3 limit 1",
timeout=60 * 2,
)
# [END howto_sensor_databricks_sql]
# [START howto_sensor_databricks_partition]
# Example of using the Databricks Partition Sensor to check the presence
# of the specified partition(s) in a table.
partition_sensor = DatabricksPartitionSensor(
databricks_conn_id=connection_id,
sql_warehouse_name=sql_warehouse_name,
catalog="hive_metastore",
task_id="partition_sensor_task",
table_name="sample_table_2",
schema="temp",
partitions={"date": "2023-01-03", "name": ["abc", "def"]},
partition_operator="=",
timeout=60 * 2,
)
# [END howto_sensor_databricks_partition]
# Task dependency between the SQL sensor and the partition sensor.
# If the first task(sql_sensor) succeeds, the second task(partition_sensor)
# runs, else all the subsequent DAG tasks and the DAG are marked as failed.
(sql_sensor >> partition_sensor)
from tests.system.utils.watcher import watcher
# This example does not need a watcher in order to properly mark success/failure
# since it is a single task, but it is given here as an example for users to
# extend it to their use cases.
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)