#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
This is an example DAG which uses the DatabricksSubmitRunOperator.
In this example, we create two tasks which execute sequentially.
The first task is to run a notebook at the workspace path "/test"
and the second task is to run a JAR uploaded to DBFS. Both,
tasks use new clusters.
Because we have set a downstream dependency on the notebook task,
the spark jar task will NOT run until the notebook task completes
successfully.
The definition of a successful run is if the run has a result_state of "SUCCESS".
For more information about the state of a run refer to
https://docs.databricks.com/api/latest/jobs.html#runstate
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow import DAG
from airflow.providers.databricks.operators.databricks import (
DatabricksCreateJobsOperator,
DatabricksNotebookOperator,
DatabricksRunNowOperator,
DatabricksSubmitRunOperator,
DatabricksTaskOperator,
)
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "example_databricks_operator"
[docs]QUERY_ID = os.environ.get("QUERY_ID", "c9cf6468-babe-41a6-abc3-10ac358c71ee")
[docs]WAREHOUSE_ID = os.environ.get("WAREHOUSE_ID", "cf414a2206dfb397")
with DAG(
dag_id=DAG_ID,
schedule="@daily",
start_date=datetime(2021, 1, 1),
tags=["example"],
catchup=False,
) as dag:
# [START howto_operator_databricks_jobs_create_json]
# Example of using the JSON parameter to initialize the operator.
[docs] job = {
"tasks": [
{
"task_key": "test",
"job_cluster_key": "job_cluster",
"notebook_task": {
"notebook_path": "/Shared/test",
},
},
],
"job_clusters": [
{
"job_cluster_key": "job_cluster",
"new_cluster": {
"spark_version": "7.3.x-scala2.12",
"node_type_id": "i3.xlarge",
"num_workers": 2,
},
},
],
}
jobs_create_json = DatabricksCreateJobsOperator(task_id="jobs_create_json", json=job)
# [END howto_operator_databricks_jobs_create_json]
# [START howto_operator_databricks_jobs_create_named]
# Example of using the named parameters to initialize the operator.
tasks = [
{
"task_key": "test",
"job_cluster_key": "job_cluster",
"notebook_task": {
"notebook_path": "/Shared/test",
},
},
]
job_clusters = [
{
"job_cluster_key": "job_cluster",
"new_cluster": {
"spark_version": "7.3.x-scala2.12",
"node_type_id": "i3.xlarge",
"num_workers": 2,
},
},
]
jobs_create_named = DatabricksCreateJobsOperator(
task_id="jobs_create_named", tasks=tasks, job_clusters=job_clusters
)
# [END howto_operator_databricks_jobs_create_named]
# [START howto_operator_databricks_run_now]
# Example of using the DatabricksRunNowOperator after creating a job with DatabricksCreateJobsOperator.
run_now = DatabricksRunNowOperator(
task_id="run_now", job_id="{{ ti.xcom_pull(task_ids='jobs_create_named') }}"
)
jobs_create_named >> run_now
# [END howto_operator_databricks_run_now]
# [START howto_operator_databricks_json]
# Example of using the JSON parameter to initialize the operator.
new_cluster = {
"spark_version": "9.1.x-scala2.12",
"node_type_id": "r3.xlarge",
"aws_attributes": {"availability": "ON_DEMAND"},
"num_workers": 8,
}
notebook_task_params = {
"new_cluster": new_cluster,
"notebook_task": {
"notebook_path": "/Users/airflow@example.com/PrepareData",
},
}
notebook_task = DatabricksSubmitRunOperator(task_id="notebook_task", json=notebook_task_params)
# [END howto_operator_databricks_json]
# [START howto_operator_databricks_named]
# Example of using the named parameters of DatabricksSubmitRunOperator
# to initialize the operator.
spark_jar_task = DatabricksSubmitRunOperator(
task_id="spark_jar_task",
new_cluster=new_cluster,
spark_jar_task={"main_class_name": "com.example.ProcessData"},
libraries=[{"jar": "dbfs:/lib/etl-0.1.jar"}],
)
# [END howto_operator_databricks_named]
notebook_task >> spark_jar_task
# [START howto_operator_databricks_notebook_new_cluster]
new_cluster_spec = {
"cluster_name": "",
"spark_version": "11.3.x-scala2.12",
"aws_attributes": {
"first_on_demand": 1,
"availability": "SPOT_WITH_FALLBACK",
"zone_id": "us-east-2b",
"spot_bid_price_percent": 100,
"ebs_volume_count": 0,
},
"node_type_id": "i3.xlarge",
"spark_env_vars": {"PYSPARK_PYTHON": "/databricks/python3/bin/python3"},
"enable_elastic_disk": False,
"data_security_mode": "LEGACY_SINGLE_USER_STANDARD",
"runtime_engine": "STANDARD",
"num_workers": 8,
}
notebook_1 = DatabricksNotebookOperator(
task_id="notebook_1",
notebook_path="/Shared/Notebook_1",
notebook_packages=[
{
"pypi": {
"package": "simplejson==3.18.0",
"repo": "https://pypi.org/simple",
}
},
{"pypi": {"package": "Faker"}},
],
source="WORKSPACE",
new_cluster=new_cluster_spec,
)
# [END howto_operator_databricks_notebook_new_cluster]
# [START howto_operator_databricks_notebook_existing_cluster]
notebook_2 = DatabricksNotebookOperator(
task_id="notebook_2",
notebook_path="/Shared/Notebook_2",
notebook_packages=[
{
"pypi": {
"package": "simplejson==3.18.0",
"repo": "https://pypi.org/simple",
}
},
],
source="WORKSPACE",
existing_cluster_id="existing_cluster_id",
)
# [END howto_operator_databricks_notebook_existing_cluster]
# [START howto_operator_databricks_task_notebook]
task_operator_nb_1 = DatabricksTaskOperator(
task_id="nb_1",
databricks_conn_id="databricks_conn",
job_cluster_key="Shared_job_cluster",
task_config={
"notebook_task": {
"notebook_path": "/Shared/Notebook_1",
"source": "WORKSPACE",
},
"libraries": [
{"pypi": {"package": "Faker"}},
{"pypi": {"package": "simplejson"}},
],
},
)
# [END howto_operator_databricks_task_notebook]
# [START howto_operator_databricks_task_sql]
task_operator_sql_query = DatabricksTaskOperator(
task_id="sql_query",
databricks_conn_id="databricks_conn",
task_config={
"sql_task": {
"query": {
"query_id": QUERY_ID,
},
"warehouse_id": WAREHOUSE_ID,
}
},
)
# [END howto_operator_databricks_task_sql]
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)