#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import asyncio
from typing import Any
from airflow.providers.databricks.hooks.databricks import DatabricksHook
from airflow.triggers.base import BaseTrigger, TriggerEvent
[docs]class DatabricksExecutionTrigger(BaseTrigger):
"""
The trigger handles the logic of async communication with DataBricks API.
:param run_id: id of the run
:param databricks_conn_id: Reference to the :ref:`Databricks connection <howto/connection:databricks>`.
:param polling_period_seconds: Controls the rate of the poll for the result of this run.
By default, the trigger will poll every 30 seconds.
:param retry_limit: The number of times to retry the connection in case of service outages.
:param retry_delay: The number of seconds to wait between retries.
:param retry_args: An optional dictionary with arguments passed to ``tenacity.Retrying`` class.
:param run_page_url: The run page url.
"""
def __init__(
self,
run_id: int,
databricks_conn_id: str,
polling_period_seconds: int = 30,
retry_limit: int = 3,
retry_delay: int = 10,
retry_args: dict[Any, Any] | None = None,
run_page_url: str | None = None,
repair_run: bool = False,
caller: str = "DatabricksExecutionTrigger",
) -> None:
super().__init__()
self.run_id = run_id
self.databricks_conn_id = databricks_conn_id
self.polling_period_seconds = polling_period_seconds
self.retry_limit = retry_limit
self.retry_delay = retry_delay
self.retry_args = retry_args
self.run_page_url = run_page_url
self.repair_run = repair_run
self.hook = DatabricksHook(
databricks_conn_id,
retry_limit=self.retry_limit,
retry_delay=self.retry_delay,
retry_args=retry_args,
caller=caller,
)
[docs] def serialize(self) -> tuple[str, dict[str, Any]]:
return (
"airflow.providers.databricks.triggers.databricks.DatabricksExecutionTrigger",
{
"run_id": self.run_id,
"databricks_conn_id": self.databricks_conn_id,
"polling_period_seconds": self.polling_period_seconds,
"retry_limit": self.retry_limit,
"retry_delay": self.retry_delay,
"retry_args": self.retry_args,
"run_page_url": self.run_page_url,
"repair_run": self.repair_run,
},
)
[docs] async def run(self):
async with self.hook:
while True:
run_state = await self.hook.a_get_run_state(self.run_id)
if not run_state.is_terminal:
self.log.info(
"run-id %s in run state %s. sleeping for %s seconds",
self.run_id,
run_state,
self.polling_period_seconds,
)
await asyncio.sleep(self.polling_period_seconds)
continue
failed_tasks = []
if run_state.result_state == "FAILED":
run_info = await self.hook.a_get_run(self.run_id)
for task in run_info.get("tasks", []):
if task.get("state", {}).get("result_state", "") == "FAILED":
task_run_id = task["run_id"]
task_key = task["task_key"]
run_output = await self.hook.a_get_run_output(task_run_id)
if "error" in run_output:
error = run_output["error"]
else:
error = run_state.state_message
failed_tasks.append({"task_key": task_key, "run_id": task_run_id, "error": error})
yield TriggerEvent(
{
"run_id": self.run_id,
"run_page_url": self.run_page_url,
"run_state": run_state.to_json(),
"repair_run": self.repair_run,
"errors": failed_tasks,
}
)
return