Source code for airflow.providers.databricks.triggers.databricks

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import asyncio
from typing import Any

from airflow.providers.databricks.hooks.databricks import DatabricksHook
from airflow.triggers.base import BaseTrigger, TriggerEvent


[docs]class DatabricksExecutionTrigger(BaseTrigger): """ The trigger handles the logic of async communication with DataBricks API. :param run_id: id of the run :param databricks_conn_id: Reference to the :ref:`Databricks connection <howto/connection:databricks>`. :param polling_period_seconds: Controls the rate of the poll for the result of this run. By default, the trigger will poll every 30 seconds. :param retry_limit: The number of times to retry the connection in case of service outages. :param retry_delay: The number of seconds to wait between retries. :param retry_args: An optional dictionary with arguments passed to ``tenacity.Retrying`` class. :param run_page_url: The run page url. """ def __init__( self, run_id: int, databricks_conn_id: str, polling_period_seconds: int = 30, retry_limit: int = 3, retry_delay: int = 10, retry_args: dict[Any, Any] | None = None, run_page_url: str | None = None, repair_run: bool = False, caller: str = "DatabricksExecutionTrigger", ) -> None: super().__init__() self.run_id = run_id self.databricks_conn_id = databricks_conn_id self.polling_period_seconds = polling_period_seconds self.retry_limit = retry_limit self.retry_delay = retry_delay self.retry_args = retry_args self.run_page_url = run_page_url self.repair_run = repair_run self.hook = DatabricksHook( databricks_conn_id, retry_limit=self.retry_limit, retry_delay=self.retry_delay, retry_args=retry_args, caller=caller, )
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: return ( "airflow.providers.databricks.triggers.databricks.DatabricksExecutionTrigger", { "run_id": self.run_id, "databricks_conn_id": self.databricks_conn_id, "polling_period_seconds": self.polling_period_seconds, "retry_limit": self.retry_limit, "retry_delay": self.retry_delay, "retry_args": self.retry_args, "run_page_url": self.run_page_url, "repair_run": self.repair_run, }, )
[docs] async def run(self): async with self.hook: while True: run_state = await self.hook.a_get_run_state(self.run_id) if not run_state.is_terminal: self.log.info( "run-id %s in run state %s. sleeping for %s seconds", self.run_id, run_state, self.polling_period_seconds, ) await asyncio.sleep(self.polling_period_seconds) continue failed_tasks = [] if run_state.result_state == "FAILED": run_info = await self.hook.a_get_run(self.run_id) for task in run_info.get("tasks", []): if task.get("state", {}).get("result_state", "") == "FAILED": task_run_id = task["run_id"] task_key = task["task_key"] run_output = await self.hook.a_get_run_output(task_run_id) if "error" in run_output: error = run_output["error"] else: error = run_state.state_message failed_tasks.append({"task_key": task_key, "run_id": task_run_id, "error": error}) yield TriggerEvent( { "run_id": self.run_id, "run_page_url": self.run_page_url, "run_state": run_state.to_json(), "repair_run": self.repair_run, "errors": failed_tasks, } ) return

Was this entry helpful?