#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Databricks hook.
This hook enable the submitting and running of jobs to the Databricks platform. Internally the
operators talk to the
``api/2.1/jobs/run-now``
`endpoint <https://docs.databricks.com/dev-tools/api/latest/jobs.html#operation/JobsRunNow>_`
or the ``api/2.1/jobs/runs/submit``
`endpoint <https://docs.databricks.com/dev-tools/api/latest/jobs.html#operation/JobsRunsSubmit>`_.
"""
from __future__ import annotations
import json
from enum import Enum
from typing import Any
from requests import exceptions as requests_exceptions
from airflow.exceptions import AirflowException
from airflow.providers.databricks.hooks.databricks_base import BaseDatabricksHook
[docs]GET_CLUSTER_ENDPOINT = ("GET", "api/2.0/clusters/get")
[docs]RESTART_CLUSTER_ENDPOINT = ("POST", "api/2.0/clusters/restart")
[docs]START_CLUSTER_ENDPOINT = ("POST", "api/2.0/clusters/start")
[docs]TERMINATE_CLUSTER_ENDPOINT = ("POST", "api/2.0/clusters/delete")
[docs]CREATE_ENDPOINT = ("POST", "api/2.1/jobs/create")
[docs]RESET_ENDPOINT = ("POST", "api/2.1/jobs/reset")
[docs]UPDATE_ENDPOINT = ("POST", "api/2.1/jobs/update")
[docs]RUN_NOW_ENDPOINT = ("POST", "api/2.1/jobs/run-now")
[docs]SUBMIT_RUN_ENDPOINT = ("POST", "api/2.1/jobs/runs/submit")
[docs]GET_RUN_ENDPOINT = ("GET", "api/2.1/jobs/runs/get")
[docs]CANCEL_RUN_ENDPOINT = ("POST", "api/2.1/jobs/runs/cancel")
[docs]DELETE_RUN_ENDPOINT = ("POST", "api/2.1/jobs/runs/delete")
[docs]REPAIR_RUN_ENDPOINT = ("POST", "api/2.1/jobs/runs/repair")
[docs]OUTPUT_RUNS_JOB_ENDPOINT = ("GET", "api/2.1/jobs/runs/get-output")
[docs]CANCEL_ALL_RUNS_ENDPOINT = ("POST", "api/2.1/jobs/runs/cancel-all")
[docs]INSTALL_LIBS_ENDPOINT = ("POST", "api/2.0/libraries/install")
[docs]UNINSTALL_LIBS_ENDPOINT = ("POST", "api/2.0/libraries/uninstall")
[docs]LIST_JOBS_ENDPOINT = ("GET", "api/2.1/jobs/list")
[docs]LIST_PIPELINES_ENDPOINT = ("GET", "api/2.0/pipelines")
[docs]WORKSPACE_GET_STATUS_ENDPOINT = ("GET", "api/2.0/workspace/get-status")
[docs]SPARK_VERSIONS_ENDPOINT = ("GET", "api/2.0/clusters/spark-versions")
[docs]class RunLifeCycleState(Enum):
"""
Enum for the run life cycle state concept of Databricks runs.
See more information at: https://docs.databricks.com/api/azure/workspace/jobs/listruns#runs-state-life_cycle_state
"""
[docs] INTERNAL_ERROR = "INTERNAL_ERROR"
[docs] TERMINATED = "TERMINATED"
[docs] TERMINATING = "TERMINATING"
[docs] WAITING_FOR_RETRY = "WAITING_FOR_RETRY"
[docs]class RunState:
"""Utility class for the run state concept of Databricks runs."""
[docs] RUN_LIFE_CYCLE_STATES = [
"PENDING",
"RUNNING",
"TERMINATING",
"TERMINATED",
"SKIPPED",
"INTERNAL_ERROR",
"QUEUED",
]
def __init__(
self, life_cycle_state: str, result_state: str = "", state_message: str = "", *args, **kwargs
) -> None:
if life_cycle_state not in self.RUN_LIFE_CYCLE_STATES:
raise AirflowException(
f"Unexpected life cycle state: {life_cycle_state}: If the state has "
"been introduced recently, please check the Databricks user "
"guide for troubleshooting information"
)
self.life_cycle_state = life_cycle_state
self.result_state = result_state
self.state_message = state_message
@property
[docs] def is_terminal(self) -> bool:
"""True if the current state is a terminal state."""
return self.life_cycle_state in ("TERMINATED", "SKIPPED", "INTERNAL_ERROR")
@property
[docs] def is_successful(self) -> bool:
"""True if the result state is SUCCESS."""
return self.result_state == "SUCCESS"
[docs] def __eq__(self, other: object) -> bool:
if not isinstance(other, RunState):
return NotImplemented
return (
self.life_cycle_state == other.life_cycle_state
and self.result_state == other.result_state
and self.state_message == other.state_message
)
[docs] def __repr__(self) -> str:
return str(self.__dict__)
[docs] def to_json(self) -> str:
return json.dumps(self.__dict__)
@classmethod
[docs] def from_json(cls, data: str) -> RunState:
return RunState(**json.loads(data))
[docs]class ClusterState:
"""Utility class for the cluster state concept of Databricks cluster."""
[docs] CLUSTER_LIFE_CYCLE_STATES = [
"PENDING",
"RUNNING",
"RESTARTING",
"RESIZING",
"TERMINATING",
"TERMINATED",
"ERROR",
"UNKNOWN",
]
def __init__(self, state: str = "", state_message: str = "", *args, **kwargs) -> None:
if state not in self.CLUSTER_LIFE_CYCLE_STATES:
raise AirflowException(
f"Unexpected cluster life cycle state: {state}: If the state has "
"been introduced recently, please check the Databricks user "
"guide for troubleshooting information"
)
self.state = state
self.state_message = state_message
@property
[docs] def is_terminal(self) -> bool:
"""True if the current state is a terminal state."""
return self.state in ("TERMINATING", "TERMINATED", "ERROR", "UNKNOWN")
@property
[docs] def is_running(self) -> bool:
"""True if the current state is running."""
return self.state in ("RUNNING", "RESIZING")
[docs] def __eq__(self, other) -> bool:
return self.state == other.state and self.state_message == other.state_message
[docs] def __repr__(self) -> str:
return str(self.__dict__)
[docs] def to_json(self) -> str:
return json.dumps(self.__dict__)
@classmethod
[docs] def from_json(cls, data: str) -> ClusterState:
return ClusterState(**json.loads(data))
[docs]class DatabricksHook(BaseDatabricksHook):
"""
Interact with Databricks.
:param databricks_conn_id: Reference to the :ref:`Databricks connection <howto/connection:databricks>`.
:param timeout_seconds: The amount of time in seconds the requests library
will wait before timing-out.
:param retry_limit: The number of times to retry the connection in case of
service outages.
:param retry_delay: The number of seconds to wait between retries (it
might be a floating point number).
:param retry_args: An optional dictionary with arguments passed to ``tenacity.Retrying`` class.
"""
[docs] hook_name = "Databricks"
def __init__(
self,
databricks_conn_id: str = BaseDatabricksHook.default_conn_name,
timeout_seconds: int = 180,
retry_limit: int = 3,
retry_delay: float = 1.0,
retry_args: dict[Any, Any] | None = None,
caller: str = "DatabricksHook",
) -> None:
super().__init__(databricks_conn_id, timeout_seconds, retry_limit, retry_delay, retry_args, caller)
[docs] def create_job(self, json: dict) -> int:
"""
Call the ``api/2.1/jobs/create`` endpoint.
:param json: The data used in the body of the request to the ``create`` endpoint.
:return: the job_id as an int
"""
response = self._do_api_call(CREATE_ENDPOINT, json)
return response["job_id"]
[docs] def reset_job(self, job_id: str, json: dict) -> None:
"""
Call the ``api/2.1/jobs/reset`` endpoint.
:param json: The data used in the new_settings of the request to the ``reset`` endpoint.
"""
self._do_api_call(RESET_ENDPOINT, {"job_id": job_id, "new_settings": json})
[docs] def update_job(self, job_id: str, json: dict) -> None:
"""
Call the ``api/2.1/jobs/update`` endpoint.
:param job_id: The id of the job to update.
:param json: The data used in the new_settings of the request to the ``update`` endpoint.
"""
self._do_api_call(UPDATE_ENDPOINT, {"job_id": job_id, "new_settings": json})
[docs] def run_now(self, json: dict) -> int:
"""
Call the ``api/2.1/jobs/run-now`` endpoint.
:param json: The data used in the body of the request to the ``run-now`` endpoint.
:return: the run_id as an int
"""
response = self._do_api_call(RUN_NOW_ENDPOINT, json)
return response["run_id"]
[docs] def submit_run(self, json: dict) -> int:
"""
Call the ``api/2.1/jobs/runs/submit`` endpoint.
:param json: The data used in the body of the request to the ``submit`` endpoint.
:return: the run_id as an int
"""
response = self._do_api_call(SUBMIT_RUN_ENDPOINT, json)
return response["run_id"]
[docs] def list_jobs(
self,
limit: int = 25,
expand_tasks: bool = False,
job_name: str | None = None,
page_token: str | None = None,
include_user_names: bool = False,
) -> list[dict[str, Any]]:
"""
List the jobs in the Databricks Job Service.
:param limit: The limit/batch size used to retrieve jobs.
:param expand_tasks: Whether to include task and cluster details in the response.
:param job_name: Optional name of a job to search.
:param page_token: The optional page token pointing at the first first job to return.
:return: A list of jobs.
"""
has_more = True
all_jobs = []
if page_token is None:
page_token = ""
while has_more:
payload: dict[str, Any] = {
"limit": limit,
"expand_tasks": expand_tasks,
"include_user_names": include_user_names,
}
payload["page_token"] = page_token
if job_name:
payload["name"] = job_name
response = self._do_api_call(LIST_JOBS_ENDPOINT, payload)
jobs = response.get("jobs", [])
if job_name:
all_jobs += [j for j in jobs if j["settings"]["name"] == job_name]
else:
all_jobs += jobs
has_more = response.get("has_more", False)
if has_more:
page_token = response.get("next_page_token", "")
return all_jobs
[docs] def find_job_id_by_name(self, job_name: str) -> int | None:
"""
Find job id by its name; if there are multiple jobs with the same name, raise AirflowException.
:param job_name: The name of the job to look up.
:return: The job_id as an int or None if no job was found.
"""
matching_jobs = self.list_jobs(job_name=job_name)
if len(matching_jobs) > 1:
raise AirflowException(
f"There are more than one job with name {job_name}. Please delete duplicated jobs first"
)
if not matching_jobs:
return None
else:
return matching_jobs[0]["job_id"]
[docs] def list_pipelines(
self, batch_size: int = 25, pipeline_name: str | None = None, notebook_path: str | None = None
) -> list[dict[str, Any]]:
"""
List the pipelines in Databricks Delta Live Tables.
:param batch_size: The limit/batch size used to retrieve pipelines.
:param pipeline_name: Optional name of a pipeline to search. Cannot be combined with path.
:param notebook_path: Optional notebook of a pipeline to search. Cannot be combined with name.
:return: A list of pipelines.
"""
has_more = True
next_token = None
all_pipelines = []
filter = None
if pipeline_name and notebook_path:
raise AirflowException("Cannot combine pipeline_name and notebook_path in one request")
if notebook_path:
filter = f"notebook='{notebook_path}'"
elif pipeline_name:
filter = f"name LIKE '{pipeline_name}'"
payload: dict[str, Any] = {
"max_results": batch_size,
}
if filter:
payload["filter"] = filter
while has_more:
if next_token is not None:
payload = {**payload, "page_token": next_token}
response = self._do_api_call(LIST_PIPELINES_ENDPOINT, payload)
pipelines = response.get("statuses", [])
all_pipelines += pipelines
if "next_page_token" in response:
next_token = response["next_page_token"]
else:
has_more = False
return all_pipelines
[docs] def find_pipeline_id_by_name(self, pipeline_name: str) -> str | None:
"""
Find pipeline id by its name; if multiple pipelines with the same name, raise AirflowException.
:param pipeline_name: The name of the pipeline to look up.
:return: The pipeline_id as a GUID string or None if no pipeline was found.
"""
matching_pipelines = self.list_pipelines(pipeline_name=pipeline_name)
if len(matching_pipelines) > 1:
raise AirflowException(
f"There are more than one pipelines with name {pipeline_name}. "
"Please delete duplicated pipelines first"
)
if not pipeline_name or len(matching_pipelines) == 0:
return None
else:
return matching_pipelines[0]["pipeline_id"]
[docs] def get_run_page_url(self, run_id: int) -> str:
"""
Retrieve run_page_url.
:param run_id: id of the run
:return: URL of the run page
"""
json = {"run_id": run_id}
response = self._do_api_call(GET_RUN_ENDPOINT, json)
return response["run_page_url"]
[docs] async def a_get_run_page_url(self, run_id: int) -> str:
"""
Async version of `get_run_page_url()`.
:param run_id: id of the run
:return: URL of the run page
"""
json = {"run_id": run_id}
response = await self._a_do_api_call(GET_RUN_ENDPOINT, json)
return response["run_page_url"]
[docs] def get_job_id(self, run_id: int) -> int:
"""
Retrieve job_id from run_id.
:param run_id: id of the run
:return: Job id for given Databricks run
"""
json = {"run_id": run_id}
response = self._do_api_call(GET_RUN_ENDPOINT, json)
return response["job_id"]
[docs] def get_run_state(self, run_id: int) -> RunState:
"""
Retrieve run state of the run.
Please note that any Airflow tasks that call the ``get_run_state`` method will result in
failure unless you have enabled xcom pickling. This can be done using the following
environment variable: ``AIRFLOW__CORE__ENABLE_XCOM_PICKLING``
If you do not want to enable xcom pickling, use the ``get_run_state_str`` method to get
a string describing state, or ``get_run_state_lifecycle``, ``get_run_state_result``, or
``get_run_state_message`` to get individual components of the run state.
:param run_id: id of the run
:return: state of the run
"""
json = {"run_id": run_id}
response = self._do_api_call(GET_RUN_ENDPOINT, json)
state = response["state"]
return RunState(**state)
[docs] async def a_get_run_state(self, run_id: int) -> RunState:
"""
Async version of `get_run_state()`.
:param run_id: id of the run
:return: state of the run
"""
json = {"run_id": run_id}
response = await self._a_do_api_call(GET_RUN_ENDPOINT, json)
state = response["state"]
return RunState(**state)
[docs] def get_run(self, run_id: int) -> dict[str, Any]:
"""
Retrieve run information.
:param run_id: id of the run
:return: state of the run
"""
json = {"run_id": run_id}
response = self._do_api_call(GET_RUN_ENDPOINT, json)
return response
[docs] async def a_get_run(self, run_id: int) -> dict[str, Any]:
"""
Async version of `get_run`.
:param run_id: id of the run
:return: state of the run
"""
json = {"run_id": run_id}
response = await self._a_do_api_call(GET_RUN_ENDPOINT, json)
return response
[docs] def get_run_state_str(self, run_id: int) -> str:
"""
Return the string representation of RunState.
:param run_id: id of the run
:return: string describing run state
"""
state = self.get_run_state(run_id)
run_state_str = (
f"State: {state.life_cycle_state}. Result: {state.result_state}. {state.state_message}"
)
return run_state_str
[docs] def get_run_state_lifecycle(self, run_id: int) -> str:
"""
Return the lifecycle state of the run.
:param run_id: id of the run
:return: string with lifecycle state
"""
return self.get_run_state(run_id).life_cycle_state
[docs] def get_run_state_result(self, run_id: int) -> str:
"""
Return the resulting state of the run.
:param run_id: id of the run
:return: string with resulting state
"""
return self.get_run_state(run_id).result_state
[docs] def get_run_state_message(self, run_id: int) -> str:
"""
Return the state message for the run.
:param run_id: id of the run
:return: string with state message
"""
return self.get_run_state(run_id).state_message
[docs] def get_run_output(self, run_id: int) -> dict:
"""
Retrieve run output of the run.
:param run_id: id of the run
:return: output of the run
"""
json = {"run_id": run_id}
run_output = self._do_api_call(OUTPUT_RUNS_JOB_ENDPOINT, json)
return run_output
[docs] async def a_get_run_output(self, run_id: int) -> dict:
"""
Async version of `get_run_output()`.
:param run_id: id of the run
:return: output of the run
"""
json = {"run_id": run_id}
run_output = await self._a_do_api_call(OUTPUT_RUNS_JOB_ENDPOINT, json)
return run_output
[docs] def cancel_run(self, run_id: int) -> None:
"""
Cancel the run.
:param run_id: id of the run
"""
json = {"run_id": run_id}
self._do_api_call(CANCEL_RUN_ENDPOINT, json)
[docs] def cancel_all_runs(self, job_id: int) -> None:
"""
Cancel all active runs of a job asynchronously.
:param job_id: The canonical identifier of the job to cancel all runs of
"""
json = {"job_id": job_id}
self._do_api_call(CANCEL_ALL_RUNS_ENDPOINT, json)
[docs] def delete_run(self, run_id: int) -> None:
"""
Delete a non-active run.
:param run_id: id of the run
"""
json = {"run_id": run_id}
self._do_api_call(DELETE_RUN_ENDPOINT, json)
[docs] def repair_run(self, json: dict) -> int:
"""
Re-run one or more tasks.
:param json: repair a job run.
"""
response = self._do_api_call(REPAIR_RUN_ENDPOINT, json)
return response["repair_id"]
[docs] def get_latest_repair_id(self, run_id: int) -> int | None:
"""Get latest repair id if any exist for run_id else None."""
json = {"run_id": run_id, "include_history": "true"}
response = self._do_api_call(GET_RUN_ENDPOINT, json)
repair_history = response["repair_history"]
if len(repair_history) == 1:
return None
else:
return repair_history[-1]["id"]
[docs] def get_cluster_state(self, cluster_id: str) -> ClusterState:
"""
Retrieve run state of the cluster.
:param cluster_id: id of the cluster
:return: state of the cluster
"""
json = {"cluster_id": cluster_id}
response = self._do_api_call(GET_CLUSTER_ENDPOINT, json)
state = response["state"]
state_message = response["state_message"]
return ClusterState(state, state_message)
[docs] async def a_get_cluster_state(self, cluster_id: str) -> ClusterState:
"""
Async version of `get_cluster_state`.
:param cluster_id: id of the cluster
:return: state of the cluster
"""
json = {"cluster_id": cluster_id}
response = await self._a_do_api_call(GET_CLUSTER_ENDPOINT, json)
state = response["state"]
state_message = response["state_message"]
return ClusterState(state, state_message)
[docs] def restart_cluster(self, json: dict) -> None:
"""
Restarts the cluster.
:param json: json dictionary containing cluster specification.
"""
self._do_api_call(RESTART_CLUSTER_ENDPOINT, json)
[docs] def start_cluster(self, json: dict) -> None:
"""
Start the cluster.
:param json: json dictionary containing cluster specification.
"""
self._do_api_call(START_CLUSTER_ENDPOINT, json)
[docs] def terminate_cluster(self, json: dict) -> None:
"""
Terminate the cluster.
:param json: json dictionary containing cluster specification.
"""
self._do_api_call(TERMINATE_CLUSTER_ENDPOINT, json)
[docs] def install(self, json: dict) -> None:
"""
Install libraries on the cluster.
Utility function to call the ``2.0/libraries/install`` endpoint.
:param json: json dictionary containing cluster_id and an array of library
"""
self._do_api_call(INSTALL_LIBS_ENDPOINT, json)
[docs] def uninstall(self, json: dict) -> None:
"""
Uninstall libraries on the cluster.
Utility function to call the ``2.0/libraries/uninstall`` endpoint.
:param json: json dictionary containing cluster_id and an array of library
"""
self._do_api_call(UNINSTALL_LIBS_ENDPOINT, json)
[docs] def update_repo(self, repo_id: str, json: dict[str, Any]) -> dict:
"""
Update given Databricks Repos.
:param repo_id: ID of Databricks Repos
:param json: payload
:return: metadata from update
"""
repos_endpoint = ("PATCH", f"api/2.0/repos/{repo_id}")
return self._do_api_call(repos_endpoint, json)
[docs] def delete_repo(self, repo_id: str):
"""
Delete given Databricks Repos.
:param repo_id: ID of Databricks Repos
:return:
"""
repos_endpoint = ("DELETE", f"api/2.0/repos/{repo_id}")
self._do_api_call(repos_endpoint)
[docs] def create_repo(self, json: dict[str, Any]) -> dict:
"""
Create a Databricks Repos.
:param json: payload
:return:
"""
repos_endpoint = ("POST", "api/2.0/repos")
return self._do_api_call(repos_endpoint, json)
[docs] def get_repo_by_path(self, path: str) -> str | None:
"""
Obtain Repos ID by path.
:param path: path to a repository
:return: Repos ID if it exists, None if doesn't.
"""
try:
result = self._do_api_call(WORKSPACE_GET_STATUS_ENDPOINT, {"path": path}, wrap_http_errors=False)
if result.get("object_type", "") == "REPO":
return str(result["object_id"])
except requests_exceptions.HTTPError as e:
if e.response.status_code != 404:
raise e
return None
[docs] def update_job_permission(self, job_id: int, json: dict[str, Any]) -> dict:
"""
Update databricks job permission.
:param job_id: job id
:param json: payload
:return: json containing permission specification
"""
return self._do_api_call(("PATCH", f"api/2.0/permissions/jobs/{job_id}"), json)
[docs] def test_connection(self) -> tuple[bool, str]:
"""Test the Databricks connectivity from UI."""
hook = DatabricksHook(databricks_conn_id=self.databricks_conn_id)
try:
hook._do_api_call(endpoint_info=SPARK_VERSIONS_ENDPOINT).get("versions")
status = True
message = "Connection successfully tested"
except Exception as e:
status = False
message = str(e)
return status, message