Source code for airflow.providers.common.sql.operators.sql
## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License.from__future__importannotationsimportastimportrefromfunctoolsimportcached_propertyfromtypingimportTYPE_CHECKING,Any,Callable,Iterable,Mapping,NoReturn,Sequence,SupportsAbsfromairflow.exceptionsimportAirflowException,AirflowFailExceptionfromairflow.hooks.baseimportBaseHookfromairflow.modelsimportBaseOperator,SkipMixinfromairflow.providers.common.sql.hooks.sqlimportDbApiHook,fetch_all_handler,return_single_query_resultsifTYPE_CHECKING:fromairflow.utils.contextimportContextdef_convert_to_float_if_possible(s:str)->float|str:try:returnfloat(s)except(ValueError,TypeError):returnsdef_parse_boolean(val:str)->str|bool:"""Try to parse a string into boolean. Raises ValueError if the input is not a valid true- or false-like string value. """val=val.lower()ifvalin("y","yes","t","true","on","1"):returnTrueifvalin("n","no","f","false","off","0"):returnFalseraiseValueError(f"{val!r} is not a boolean-like string value")def_get_failed_checks(checks,col=None):""" IMPORTANT!!! Keep it for compatibility with released 8.4.0 version of google provider. Unfortunately the provider used _get_failed_checks and parse_boolean as imports and we should keep those methods to avoid 8.4.0 version from failing. """ifcol:return[f"Column: {col}\nCheck: {check},\nCheck Values: {check_values}\n"forcheck,check_valuesinchecks.items()ifnotcheck_values["success"]]return[f"\tCheck: {check},\n\tCheck Values: {check_values}\n"forcheck,check_valuesinchecks.items()ifnotcheck_values["success"]]parse_boolean=_parse_boolean""":sphinx-autoapi-skip:IMPORTANT!!! Keep it for compatibility with released 8.4.0 version of google provider.Unfortunately the provider used _get_failed_checks and parse_boolean as imports and we shouldkeep those methods to avoid 8.4.0 version from failing."""_PROVIDERS_MATCHER=re.compile(r"airflow\.providers\.(.*)\.hooks.*")_MIN_SUPPORTED_PROVIDERS_VERSION={"amazon":"4.1.0","apache.drill":"2.1.0","apache.druid":"3.1.0","apache.hive":"3.1.0","apache.pinot":"3.1.0","databricks":"3.1.0","elasticsearch":"4.1.0","exasol":"3.1.0","google":"8.2.0","jdbc":"3.1.0","mssql":"3.1.0","mysql":"3.1.0","odbc":"3.1.0","oracle":"3.1.0","postgres":"5.1.0","presto":"3.1.0","qubole":"3.1.0","slack":"5.1.0","snowflake":"3.1.0","sqlite":"3.1.0","trino":"3.1.0","vertica":"3.1.0",}
[docs]classBaseSQLOperator(BaseOperator):""" This is a base class for generic SQL Operator to get a DB Hook. The provided method is .get_db_hook(). The default behavior will try to retrieve the DB hook based on connection type. You can customize the behavior by overriding the .get_db_hook() method. :param conn_id: reference to a specific database """def__init__(self,*,conn_id:str|None=None,database:str|None=None,hook_params:dict|None=None,retry_on_failure:bool=True,**kwargs,):super().__init__(**kwargs)self.conn_id=conn_idself.database=databaseself.hook_params={}ifhook_paramsisNoneelsehook_paramsself.retry_on_failure=retry_on_failure@cached_propertydef_hook(self):"""Get DB Hook based on connection type."""self.log.debug("Get connection for %s",self.conn_id)conn=BaseHook.get_connection(self.conn_id)hook=conn.get_hook(hook_params=self.hook_params)ifnotisinstance(hook,DbApiHook):fromairflow.hooks.dbapi_hookimportDbApiHookas_DbApiHookifisinstance(hook,_DbApiHook):# This case might happen if user installed common.sql provider but did not upgrade the# Other provider's versions to a version that supports common.sql providerclass_module=hook.__class__.__module__match=_PROVIDERS_MATCHER.match(class_module)ifmatch:provider=match.group(1)min_version=_MIN_SUPPORTED_PROVIDERS_VERSION.get(provider)ifmin_version:raiseAirflowException(f"You are trying to use common-sql with {hook.__class__.__name__},"f" but the Hook class comes from provider {provider} that does not support it."f" Please upgrade provider {provider} to at least {min_version}.")raiseAirflowException(f"You are trying to use `common-sql` with {hook.__class__.__name__},"" but its provider does not support it. Please upgrade the provider to a version that"" supports `common-sql`. The hook class should be a subclass of"" `airflow.providers.common.sql.hooks.sql.DbApiHook`."f" Got {hook.__class__.__name__} Hook with class hierarchy: {hook.__class__.mro()}")ifself.database:hook.schema=self.databasereturnhook
[docs]defget_db_hook(self)->DbApiHook:""" Get the database hook for the connection. :return: the database hook object. """returnself._hook
[docs]classSQLExecuteQueryOperator(BaseSQLOperator):""" Executes SQL code in a specific database. When implementing a specific Operator, you can also implement `_process_output` method in the hook to perform additional processing of values returned by the DB Hook of yours. For example, you can join description retrieved from the cursors of your statements with returned values, or save the output of your operator to a file. :param sql: the SQL code or string pointing to a template file to be executed (templated). File must have a '.sql' extension. :param autocommit: (optional) if True, each command is automatically committed (default: False). :param parameters: (optional) the parameters to render the SQL query with. :param handler: (optional) the function that will be applied to the cursor (default: fetch_all_handler). :param split_statements: (optional) if split single SQL string into statements. By default, defers to the default value in the ``run`` method of the configured hook. :param return_last: (optional) return the result of only last statement (default: True). :param show_return_value_in_logs: (optional) if true operator output will be printed to the task log. Use with caution. It's not recommended to dump large datasets to the log. (default: False). .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SQLExecuteQueryOperator` """
def__init__(self,*,sql:str|list[str],autocommit:bool=False,parameters:Mapping|Iterable|None=None,handler:Callable[[Any],Any]=fetch_all_handler,split_statements:bool|None=None,return_last:bool=True,show_return_value_in_logs:bool=False,**kwargs,)->None:super().__init__(**kwargs)self.sql=sqlself.autocommit=autocommitself.parameters=parametersself.handler=handlerself.split_statements=split_statementsself.return_last=return_lastself.show_return_value_in_logs=show_return_value_in_logsdef_process_output(self,results:list[Any],descriptions:list[Sequence[Sequence]|None])->list[Any]:""" Processes output before it is returned by the operator. It can be overridden by the subclass in case some extra processing is needed. Note that unlike DBApiHook return values returned - the results passed and returned by ``_process_output`` should always be lists of results - each element of the list is a result from a single SQL statement (typically this will be list of Rows). You have to make sure that this is the same for returned values = there should be one element in the list for each statement executed by the hook.. The "process_output" method can override the returned output - augmenting or processing the output as needed - the output returned will be returned as execute return value and if do_xcom_push is set to True, it will be set as XCom returned. :param results: results in the form of list of rows. :param descriptions: list of descriptions returned by ``cur.description`` in the Python DBAPI """ifself.show_return_value_in_logs:self.log.info("Operator output is: %s",results)returnresultsdef_should_run_output_processing(self)->bool:returnself.do_xcom_push
[docs]defexecute(self,context):self.log.info("Executing: %s",self.sql)hook=self.get_db_hook()ifself.split_statementsisnotNone:extra_kwargs={"split_statements":self.split_statements}else:extra_kwargs={}output=hook.run(sql=self.sql,autocommit=self.autocommit,parameters=self.parameters,handler=self.handlerifself._should_run_output_processing()elseNone,return_last=self.return_last,**extra_kwargs,)ifnotself._should_run_output_processing():returnNoneifreturn_single_query_results(self.sql,self.return_last,self.split_statements):# For simplicity, we pass always list as input to _process_output, regardless if# single query results are going to be returned, and we return the first element# of the list in this case from the (always) list returned by _process_outputreturnself._process_output([output],hook.descriptions)[-1]returnself._process_output(output,hook.descriptions)
[docs]defprepare_template(self)->None:"""Parse template file for attribute parameters."""ifisinstance(self.parameters,str):self.parameters=ast.literal_eval(self.parameters)
[docs]classSQLColumnCheckOperator(BaseSQLOperator):""" Performs one or more of the templated checks in the column_checks dictionary. Checks are performed on a per-column basis specified by the column_mapping. Each check can take one or more of the following options: * ``equal_to``: an exact value to equal, cannot be used with other comparison options * ``greater_than``: value that result should be strictly greater than * ``less_than``: value that results should be strictly less than * ``geq_to``: value that results should be greater than or equal to * ``leq_to``: value that results should be less than or equal to * ``tolerance``: the percentage that the result may be off from the expected value * ``partition_clause``: an extra clause passed into a WHERE statement to partition data :param table: the table to run checks on :param column_mapping: the dictionary of columns and their associated checks, e.g. .. code-block:: python { "col_name": { "null_check": { "equal_to": 0, "partition_clause": "foreign_key IS NOT NULL", }, "min": { "greater_than": 5, "leq_to": 10, "tolerance": 0.2, }, "max": {"less_than": 1000, "geq_to": 10, "tolerance": 0.01}, } } :param partition_clause: a partial SQL statement that is added to a WHERE clause in the query built by the operator that creates partition_clauses for the checks to run on, e.g. .. code-block:: python "date = '1970-01-01'" :param conn_id: the connection ID used to connect to the database :param database: name of database which overwrite the defined one in connection :param accept_none: whether or not to accept None values returned by the query. If true, converts None to 0. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SQLColumnCheckOperator` """
[docs]sql_check_template=""" SELECT '{column}' AS col_name, '{check}' AS check_type, {column}_{check} AS check_result FROM (SELECT {check_statement} AS {column}_{check} FROM {table}{partition_clause}) AS sq """
[docs]column_checks={"null_check":"SUM(CASE WHEN {column} IS NULL THEN 1 ELSE 0 END)","distinct_check":"COUNT(DISTINCT({column}))","unique_check":"COUNT({column}) - COUNT(DISTINCT({column}))","min":"MIN({column})","max":"MAX({column})",}
def__init__(self,*,table:str,column_mapping:dict[str,dict[str,Any]],partition_clause:str|None=None,conn_id:str|None=None,database:str|None=None,accept_none:bool=True,**kwargs,):super().__init__(conn_id=conn_id,database=database,**kwargs)self.table=tableself.column_mapping=column_mappingself.partition_clause=partition_clauseself.accept_none=accept_nonedef_build_checks_sql():forcolumn,checksinself.column_mapping.items():forcheck,check_valuesinchecks.items():self._column_mapping_validation(check,check_values)yieldself._generate_sql_query(column,checks)checks_sql="UNION ALL".join(_build_checks_sql())self.sql=f"SELECT col_name, check_type, check_result FROM ({checks_sql}) AS check_columns"
[docs]defexecute(self,context:Context):hook=self.get_db_hook()records=hook.get_records(self.sql)ifnotrecords:self._raise_exception(f"The following query returned zero rows: {self.sql}")self.log.info("Record: %s",records)forcolumn,check,resultinrecords:tolerance=self.column_mapping[column][check].get("tolerance")self.column_mapping[column][check]["result"]=resultself.column_mapping[column][check]["success"]=self._get_match(self.column_mapping[column][check],result,tolerance)failed_tests=[f"Column: {col}\n\tCheck: {check},\n\tCheck Values: {check_values}\n"forcol,checksinself.column_mapping.items()forcheck,check_valuesinchecks.items()ifnotcheck_values["success"]]iffailed_tests:exception_string=(f"Test failed.\nResults:\n{records!s}\n"f"The following tests have failed:\n{''.join(failed_tests)}")self._raise_exception(exception_string)self.log.info("All tests have passed")
def_generate_sql_query(self,column,checks):def_generate_partition_clause(check):ifself.partition_clauseand"partition_clause"notinchecks[check]:returnf"WHERE {self.partition_clause}"elifnotself.partition_clauseand"partition_clause"inchecks[check]:returnf"WHERE {checks[check]['partition_clause']}"elifself.partition_clauseand"partition_clause"inchecks[check]:returnf"WHERE {self.partition_clause} AND {checks[check]['partition_clause']}"else:return""checks_sql="UNION ALL".join(self.sql_check_template.format(check_statement=self.column_checks[check].format(column=column),check=check,table=self.table,column=column,partition_clause=_generate_partition_clause(check),)forcheckinchecks)returnchecks_sqldef_get_match(self,check_values,record,tolerance=None)->bool:ifrecordisNoneandself.accept_none:record=0match_boolean=Trueif"geq_to"incheck_values:iftoleranceisnotNone:match_boolean=record>=check_values["geq_to"]*(1-tolerance)else:match_boolean=record>=check_values["geq_to"]elif"greater_than"incheck_values:iftoleranceisnotNone:match_boolean=record>check_values["greater_than"]*(1-tolerance)else:match_boolean=record>check_values["greater_than"]if"leq_to"incheck_values:iftoleranceisnotNone:match_boolean=record<=check_values["leq_to"]*(1+tolerance)andmatch_booleanelse:match_boolean=record<=check_values["leq_to"]andmatch_booleanelif"less_than"incheck_values:iftoleranceisnotNone:match_boolean=record<check_values["less_than"]*(1+tolerance)andmatch_booleanelse:match_boolean=record<check_values["less_than"]andmatch_booleanif"equal_to"incheck_values:iftoleranceisnotNone:match_boolean=(check_values["equal_to"]*(1-tolerance)<=record<=check_values["equal_to"]*(1+tolerance))andmatch_booleanelse:match_boolean=record==check_values["equal_to"]andmatch_booleanreturnmatch_booleandef_column_mapping_validation(self,check,check_values):ifchecknotinself.column_checks:raiseAirflowException(f"Invalid column check: {check}.")if("greater_than"notincheck_valuesand"geq_to"notincheck_valuesand"less_than"notincheck_valuesand"leq_to"notincheck_valuesand"equal_to"notincheck_values):raiseValueError("Please provide one or more of: less_than, leq_to, ""greater_than, geq_to, or equal_to in the check's dict.")if"greater_than"incheck_valuesand"less_than"incheck_values:ifcheck_values["greater_than"]>=check_values["less_than"]:raiseValueError("greater_than should be strictly less than ""less_than. Use geq_to or leq_to for ""overlapping equality.")if"greater_than"incheck_valuesand"leq_to"incheck_values:ifcheck_values["greater_than"]>=check_values["leq_to"]:raiseValueError("greater_than must be strictly less than leq_to. ""Use geq_to with leq_to for overlapping equality.")if"geq_to"incheck_valuesand"less_than"incheck_values:ifcheck_values["geq_to"]>=check_values["less_than"]:raiseValueError("geq_to should be strictly less than less_than. ""Use leq_to with geq_to for overlapping equality.")if"geq_to"incheck_valuesand"leq_to"incheck_values:ifcheck_values["geq_to"]>check_values["leq_to"]:raiseValueError("geq_to should be less than or equal to leq_to.")if"greater_than"incheck_valuesand"geq_to"incheck_values:raiseValueError("Only supply one of greater_than or geq_to.")if"less_than"incheck_valuesand"leq_to"incheck_values:raiseValueError("Only supply one of less_than or leq_to.")if("greater_than"incheck_valuesor"geq_to"incheck_valuesor"less_than"incheck_valuesor"leq_to"incheck_values)and"equal_to"incheck_values:raiseValueError("equal_to cannot be passed with a greater or less than ""function. To specify 'greater than or equal to' or ""'less than or equal to', use geq_to or leq_to.")
[docs]classSQLTableCheckOperator(BaseSQLOperator):""" Performs one or more of the checks provided in the checks dictionary. Checks should be written to return a boolean result. :param table: the table to run checks on :param checks: the dictionary of checks, where check names are followed by a dictionary containing at least a check statement, and optionally a partition clause, e.g.: .. code-block:: python { "row_count_check": {"check_statement": "COUNT(*) = 1000"}, "column_sum_check": {"check_statement": "col_a + col_b < col_c"}, "third_check": {"check_statement": "MIN(col) = 1", "partition_clause": "col IS NOT NULL"}, } :param partition_clause: a partial SQL statement that is added to a WHERE clause in the query built by the operator that creates partition_clauses for the checks to run on, e.g. .. code-block:: python "date = '1970-01-01'" :param conn_id: the connection ID used to connect to the database :param database: name of database which overwrite the defined one in connection .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SQLTableCheckOperator` """
[docs]sql_check_template=""" SELECT '{check_name}' AS check_name, MIN({check_name}) AS check_result FROM (SELECT CASE WHEN {check_statement} THEN 1 ELSE 0 END AS {check_name} FROM {table}{partition_clause}) AS sq """
def__init__(self,*,table:str,checks:dict[str,dict[str,Any]],partition_clause:str|None=None,conn_id:str|None=None,database:str|None=None,**kwargs,):super().__init__(conn_id=conn_id,database=database,**kwargs)self.table=tableself.checks=checksself.partition_clause=partition_clauseself.sql=f"SELECT check_name, check_result FROM ({self._generate_sql_query()}) AS check_table"
[docs]defexecute(self,context:Context):hook=self.get_db_hook()records=hook.get_records(self.sql)ifnotrecords:self._raise_exception(f"The following query returned zero rows: {self.sql}")self.log.info("Record:\n%s",records)forrowinrecords:check,result=rowself.checks[check]["success"]=_parse_boolean(str(result))failed_tests=[f"\tCheck: {check},\n\tCheck Values: {check_values}\n"forcheck,check_valuesinself.checks.items()ifnotcheck_values["success"]]iffailed_tests:exception_string=(f"Test failed.\nQuery:\n{self.sql}\nResults:\n{records!s}\n"f"The following tests have failed:\n{', '.join(failed_tests)}")self._raise_exception(exception_string)self.log.info("All tests have passed")
def_generate_sql_query(self):self.log.debug("Partition clause: %s",self.partition_clause)def_generate_partition_clause(check_name):ifself.partition_clauseand"partition_clause"notinself.checks[check_name]:returnf"WHERE {self.partition_clause}"elifnotself.partition_clauseand"partition_clause"inself.checks[check_name]:returnf"WHERE {self.checks[check_name]['partition_clause']}"elifself.partition_clauseand"partition_clause"inself.checks[check_name]:returnf"WHERE {self.partition_clause} AND {self.checks[check_name]['partition_clause']}"else:return""return"UNION ALL".join(self.sql_check_template.format(check_statement=value["check_statement"],check_name=check_name,table=self.table,partition_clause=_generate_partition_clause(check_name),)forcheck_name,valueinself.checks.items())
[docs]classSQLCheckOperator(BaseSQLOperator):""" Performs checks against a db. The ``SQLCheckOperator`` expects a sql query that will return a single row. Each value on that first row is evaluated using python ``bool`` casting. If any of the values return ``False`` the check is failed and errors out. Note that Python bool casting evals the following as ``False``: * ``False`` * ``0`` * Empty string (``""``) * Empty list (``[]``) * Empty dictionary or set (``{}``) Given a query like ``SELECT COUNT(*) FROM foo``, it will fail only if the count ``== 0``. You can craft much more complex query that could, for instance, check that the table has the same number of rows as the source table upstream, or that the count of today's partition is greater than yesterday's partition, or that a set of metrics are less than 3 standard deviation for the 7 day average. This operator can be used as a data quality check in your pipeline, and depending on where you put it in your DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and receive email alerts without stopping the progress of the DAG. :param sql: the sql to be executed. (templated) :param conn_id: the connection ID used to connect to the database. :param database: name of database which overwrite the defined one in connection :param parameters: (optional) the parameters to render the SQL query with. """
[docs]defexecute(self,context:Context):self.log.info("Executing SQL check: %s",self.sql)records=self.get_db_hook().get_first(self.sql,self.parameters)self.log.info("Record: %s",records)ifnotrecords:self._raise_exception(f"The following query returned zero rows: {self.sql}")elifnotall(bool(r)forrinrecords):self._raise_exception(f"Test failed.\nQuery:\n{self.sql}\nResults:\n{records!s}")self.log.info("Success.")
[docs]classSQLValueCheckOperator(BaseSQLOperator):""" Performs a simple value check using sql code. :param sql: the sql to be executed. (templated) :param conn_id: the connection ID used to connect to the database. :param database: name of database which overwrite the defined one in connection """
[docs]defexecute(self,context:Context):self.log.info("Executing SQL check: %s",self.sql)records=self.get_db_hook().get_first(self.sql)ifnotrecords:self._raise_exception(f"The following query returned zero rows: {self.sql}")pass_value_conv=_convert_to_float_if_possible(self.pass_value)is_numeric_value_check=isinstance(pass_value_conv,float)tolerance_pct_str=str(self.tol*100)+"%"ifself.tolisnotNoneelseNoneerror_msg=("Test failed.\nPass value:{pass_value_conv}\n""Tolerance:{tolerance_pct_str}\n""Query:\n{sql}\nResults:\n{records!s}").format(pass_value_conv=pass_value_conv,tolerance_pct_str=tolerance_pct_str,sql=self.sql,records=records,)ifnotis_numeric_value_check:tests=self._get_string_matches(records,pass_value_conv)elifis_numeric_value_check:try:numeric_records=self._to_float(records)except(ValueError,TypeError):raiseAirflowException(f"Converting a result to float failed.\n{error_msg}")tests=self._get_numeric_matches(numeric_records,pass_value_conv)else:tests=[]ifnotall(tests):self._raise_exception(error_msg)
[docs]classSQLIntervalCheckOperator(BaseSQLOperator):""" Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from days_back before. :param table: the table name :param conn_id: the connection ID used to connect to the database. :param database: name of database which will overwrite the defined one in connection :param days_back: number of days between ds and the ds we want to check against. Defaults to 7 days :param date_filter_column: The column name for the dates to filter on. Defaults to 'ds' :param ratio_formula: which formula to use to compute the ratio between the two metrics. Assuming cur is the metric of today and ref is the metric to today - days_back. Default: 'max_over_min' * ``max_over_min``: computes max(cur, ref) / min(cur, ref) * ``relative_diff``: computes abs(cur-ref) / ref :param ignore_zero: whether we should ignore zero metrics :param metrics_thresholds: a dictionary of ratios indexed by metrics """
def__init__(self,*,table:str,metrics_thresholds:dict[str,int],date_filter_column:str|None="ds",days_back:SupportsAbs[int]=-7,ratio_formula:str|None="max_over_min",ignore_zero:bool=True,conn_id:str|None=None,database:str|None=None,**kwargs,):super().__init__(conn_id=conn_id,database=database,**kwargs)ifratio_formulanotinself.ratio_formulas:msg_template="Invalid diff_method: {diff_method}. Supported diff methods are: {diff_methods}"raiseAirflowFailException(msg_template.format(diff_method=ratio_formula,diff_methods=self.ratio_formulas))self.ratio_formula=ratio_formulaself.ignore_zero=ignore_zeroself.table=tableself.metrics_thresholds=metrics_thresholdsself.metrics_sorted=sorted(metrics_thresholds.keys())self.date_filter_column=date_filter_columnself.days_back=-abs(days_back)sqlexp=", ".join(self.metrics_sorted)sqlt=f"SELECT {sqlexp} FROM {table} WHERE {date_filter_column}="self.sql1=sqlt+"'{{ ds }}'"self.sql2=sqlt+"'{{ macros.ds_add(ds, "+str(self.days_back)+") }}'"
[docs]defexecute(self,context:Context):hook=self.get_db_hook()self.log.info("Using ratio formula: %s",self.ratio_formula)self.log.info("Executing SQL check: %s",self.sql2)row2=hook.get_first(self.sql2)self.log.info("Executing SQL check: %s",self.sql1)row1=hook.get_first(self.sql1)ifnotrow2:self._raise_exception(f"The following query returned zero rows: {self.sql2}")ifnotrow1:self._raise_exception(f"The following query returned zero rows: {self.sql1}")current=dict(zip(self.metrics_sorted,row1))reference=dict(zip(self.metrics_sorted,row2))ratios:dict[str,int|None]={}test_results={}formetricinself.metrics_sorted:cur=current[metric]ref=reference[metric]threshold=self.metrics_thresholds[metric]ifcur==0orref==0:ratios[metric]=Nonetest_results[metric]=self.ignore_zeroelse:ratio_metric=self.ratio_formulas[self.ratio_formula](current[metric],reference[metric])ratios[metric]=ratio_metricifratio_metricisnotNone:test_results[metric]=ratio_metric<thresholdelse:test_results[metric]=self.ignore_zeroself.log.info(("Current metric for %s: %s\n""Past metric for %s: %s\n""Ratio for %s: %s\n""Threshold: %s\n"),metric,cur,metric,ref,metric,ratios[metric],threshold,)ifnotall(test_results.values()):failed_tests=[it[0]foritintest_results.items()ifnotit[1]]self.log.warning("The following %s tests out of %s failed:",len(failed_tests),len(self.metrics_sorted),)forkinfailed_tests:self.log.warning("'%s' check failed. %s is above %s",k,ratios[k],self.metrics_thresholds[k],)self._raise_exception(f"The following tests have failed:\n{', '.join(sorted(failed_tests))}")self.log.info("All tests have passed")
[docs]classSQLThresholdCheckOperator(BaseSQLOperator):""" Performs a value check using sql code against a minimum threshold and a maximum threshold. Thresholds can be in the form of a numeric value OR a sql statement that results a numeric. :param sql: the sql to be executed. (templated) :param conn_id: the connection ID used to connect to the database. :param database: name of database which overwrite the defined one in connection :param min_threshold: numerical value or min threshold sql to be executed (templated) :param max_threshold: numerical value or max threshold sql to be executed (templated) """
[docs]defexecute(self,context:Context):hook=self.get_db_hook()result=hook.get_first(self.sql)[0]ifnotresult:self._raise_exception(f"The following query returned zero rows: {self.sql}")min_threshold=_convert_to_float_if_possible(self.min_threshold)max_threshold=_convert_to_float_if_possible(self.max_threshold)ifisinstance(min_threshold,float):lower_bound=min_thresholdelse:lower_bound=hook.get_first(min_threshold)[0]ifisinstance(max_threshold,float):upper_bound=max_thresholdelse:upper_bound=hook.get_first(max_threshold)[0]meta_data={"result":result,"task_id":self.task_id,"min_threshold":lower_bound,"max_threshold":upper_bound,"within_threshold":lower_bound<=result<=upper_bound,}self.push(meta_data)ifnotmeta_data["within_threshold"]:result=(round(meta_data.get("result"),2)# type: ignore[arg-type]ifmeta_data.get("result")isnotNoneelse"<None>")error_msg=(f'Threshold Check: "{meta_data.get("task_id")}" failed.\n'f'DAG: {self.dag_id}\nTask_id: {meta_data.get("task_id")}\n'f'Check description: {meta_data.get("description")}\n'f"SQL: {self.sql}\n"f"Result: {result} is not within thresholds "f'{meta_data.get("min_threshold")} and {meta_data.get("max_threshold")}')self._raise_exception(error_msg)self.log.info("Test %s Successful.",self.task_id)
[docs]defpush(self,meta_data):""" Optional: Send data check info and metadata to an external database. Default functionality will log metadata. """info="\n".join(f"""{key}: {item}"""forkey,iteminmeta_data.items())self.log.info("Log from %s:\n%s",self.dag_id,info)
[docs]classBranchSQLOperator(BaseSQLOperator,SkipMixin):""" Allows a DAG to "branch" or follow a specified path based on the results of a SQL query. :param sql: The SQL code to be executed, should return true or false (templated) Template reference are recognized by str ending in '.sql'. Expected SQL query to return a boolean (True/False), integer (0 = False, Otherwise = 1) or string (true/y/yes/1/on/false/n/no/0/off). :param follow_task_ids_if_true: task id or task ids to follow if query returns true :param follow_task_ids_if_false: task id or task ids to follow if query returns false :param conn_id: the connection ID used to connect to the database. :param database: name of database which overwrite the defined one in connection :param parameters: (optional) the parameters to render the SQL query with. """
[docs]defexecute(self,context:Context):self.log.info("Executing: %s (with parameters %s) with connection: %s",self.sql,self.parameters,self.conn_id,)record=self.get_db_hook().get_first(self.sql,self.parameters)ifnotrecord:raiseAirflowException("No rows returned from sql query. Operator expected True or False return value.")ifisinstance(record,list):ifisinstance(record[0],list):query_result=record[0][0]else:query_result=record[0]elifisinstance(record,tuple):query_result=record[0]else:query_result=recordself.log.info("Query returns %s, type '%s'",query_result,type(query_result))follow_branch=Nonetry:ifisinstance(query_result,bool):ifquery_result:follow_branch=self.follow_task_ids_if_trueelifisinstance(query_result,str):# return result is not Boolean, try to convert from String to Booleanif_parse_boolean(query_result):follow_branch=self.follow_task_ids_if_trueelifisinstance(query_result,int):ifbool(query_result):follow_branch=self.follow_task_ids_if_trueelse:raiseAirflowException(f"Unexpected query return result '{query_result}' type '{type(query_result)}'")iffollow_branchisNone:follow_branch=self.follow_task_ids_if_falseexceptValueError:raiseAirflowException(f"Unexpected query return result '{query_result}' type '{type(query_result)}'")self.skip_all_except(context["ti"],follow_branch)